• 博客(2219)
  • 资源 (9)
  • 收藏
  • 关注

原创 企业DevOps探讨:“谁构建、谁运行”原则的理论基础

“谁构建,谁运行” --沃纳·沃格尔这样的场景大家想必不会陌生:我们正与家人共度美好时光,突然刺耳的电话铃声嗡嗡响起,我们的注意力也为之吸引。听筒中的尖叫声告知,我们的应用程序——也就是那些定期受到内存泄漏侵扰、但重启之后又能恢复正常的小冤家们——现在终于彻底起义了,服务器资源在几分钟之内就被其彻底榨干。目前该应用已经无法正常起效,而运维团队除了尝试重启与回滚之外无法可想——而最新

2015-12-30 15:18:26 9520

原创 企业DevOps:实施过程中需要关注的各项要点

作者:亚马逊云科技企业市场战略总监Stephen Orban“经验并非凭空创造,而是依靠点滴积累所实现” ---阿尔贝·加缪在此次的企业DevOps探索之旅系列文章当中,我将带大家一同探讨企业在具备一定DevOps经验之后又该如何处理下一步可能面临的状况。当然,这些只是我个人在接触自动化、面向客户服务之IT体系以及“谁构建、谁运行”方面事务的同时积累下的一些心得体

2015-12-29 19:36:50 8138

翻译 将DevOps纳入企业环境引发的思考

作者:亚马逊云科技企业市场战略总监Stephen Orban“发展是一种以渐进式改善为载体的持续性行为”——英德拉瓦蒂虽然DevOps可以算是相对新鲜的概念,不过在我看来、其本质思路很早之前就已经出现。从这个角度看,目前很多企业已经广泛接纳这一概念并将其作为文化性产物看待,具体而言就是将大量原本孤立的团队融合起来,从而实现速度更快、频率更高且更为可靠的工作成果。我个人非常幸运

2015-10-13 17:38:41 6414

翻译 利用Amazon Machine Learning与Amazon Redshift建立二进制分类模型

日常生活中的大部分决策都以二进制形式存在,具体来说就是这类问题能够以是或者否来回答。而在商业活动中,能够以二进制方式回答的问题也有很多。举例来说:“这种情况是否属于交易欺诈?”,“这位客户是否会购买该产品?”或者“这位用户是否存在流失风险?”等等。在机器学习机制中,我们将此称为二进制分类问题。很多商业决策都能够通过准确预测二进制问题的答案来得到强化。Amazon Michine Learning(

2015-09-07 17:10:46 8318

翻译 利用Amazon Mobile Analytics与R深入探究移动应用的使用模式

作者:Sandeep Atluri 亚马逊数据科学家要真正鼓励用户使用我们的移动应用程序,最重要的前提就是深入了解用户使用应用程序时的行为模式,而后据此作出体验优化。不过通过应用程序事件数据来找出有意义的模式往往极具挑战性,而标准KPI所提供的诸如月度活跃用户(简称MAU)以及每日活跃用户(简称DAU)并不足以勾勒出完整的图景。举例来说,所发布应用在过去三十天中的用户开启次数能够帮

2015-08-31 18:33:41 6857

翻译 亚马逊云科技使用心得:当初我曾错过的那些宝贵经验

在今天的文章中,我整理出了大量当初曾经错过、而至今仍将我追悔莫及的亚马逊云科技(Amazon Web Services)使用心得。在几年来的实践当中,我通过在亚马逊云科技之上新手构建及部署各类应用程序而积累到了这些经验。虽然内容有些杂乱,但相信仍然能给各位带来一点启示。从物理服务器向“云环境”转移的过程不仅仅是一项技术任务,同时也意味着我们的思维方式需要作出针对性的转变。总体而言,在物理环境下我们

2015-07-08 22:52:17 28868

原创 零代码生成 3D 游戏:基于 Amazon Q Developer CLI 和 Three.js 的实践

创建一个赛车的小游戏,放到这个路径 /Users/valyli/three-js-demo-2 . 创建之前,先做规划,确定创建的步骤.把这个计划写入一个markdown文档.后续创建过程中,每一个步骤都重新与这个计划文档进行核对,并标注完成的状态.通过这个方法来确保创建过程的质量,保证最终输出的游戏工程可以正确运行.在这个版本中,最重要的是做出这个小游戏,能够正常演示.并不需要复杂的玩法和功能.它们通常使用的是自己游戏的美术设计,例如:角色的 3D 模型、卡通界面、技能特效等。

2025-08-05 09:06:25 415

转载 多Agents协作指南一:用Strands Agents实现Agent as Tools模式

考取AWS AI Certification,通过行业认可的认证验证您的AI/ML个人技能,为您的未来提供动力。传统的单Agent尝试处理所有任务,常在专门领域表现平平。而“Agent as Tools”协作模式将专业工作分配给由管理者协调的专用Agent,每个专家Agent在其特定领域发挥专长,的Agent协作模式,与擅长不同任务处理的专家Agent一起,协调处理用户查询并提供全面分析的Agent系统架构图示。使用以下代码创建管理者Agent,管理者Agent统筹整个系统,协调三个专家Agent。

2025-08-04 11:03:20 15

转载 又快又准!Q CLI+MCP自动化混沌工程实验

更重要的是,它具备上下文感知能力,能够记住之前的对话和实验历史,提供连贯的交互体验。然而,传统的混沌工程实施过程往往需要大量的人工干预,从定义稳态假设到设计实验模板,再到分析实验结果,都需要依赖架构师具备深厚的专业知识和丰富的经验。,通过自然语言交互的方式,让原本需要深厚专业知识的混沌工程变得人人可用,即使是初学者也能通过简单的对话来设计和执行复杂的故障注入实验。能够从中获得价值,通过量化的实验结果和风险评估报告,可以更好地理解系统的风险状况,制定更加合理的技术投资和风险管控策略。

2025-08-01 11:03:07 30

转载 Strands Agents 1.0上线,多Agents协作落地生产更简单

系统会为每个Agent分配一个用于追踪的唯一标识符,并能在同一会话中处理多个并发运行的Agent,以应对多Agents场景,确保Agent在部署、扩容事件以及系统重启等情况下,能够始终保持上下文连贯性。模式将具备专业能力的Agent,转化为可供其他Agent调用的智能工具,支持分层委托机制:作为协调者的Agent可在动态咨询领域专家Agent的同时,始终掌控请求处理的主导权。工具,任务可借此工具无缝转移控制权,并保持对话历史与上下文信息的连贯性,如同客服代表向客户询问更多信息细节时的场景。

2025-07-31 12:11:58 37

原创 基于 Amazon Nova 实现优化呼叫中心导航场景

在本文中,我们会首先基于一个模拟的原始导航关键词词库,通过 Amazon Polly 基于不同口音(美国英语,印度英语等)生成对应的录音文件,然后通过 Amazon Transcribe 生成对应语音的文本,最后进行汇总,即利用了 ASR 的语音/语音关联性导致的转录”差异”,完成了原始关键词词库的扩词,同时利用该扩词集合还可以作为后续的测试集。从测试结果看,Amazon Nova 对于语言语音的理解有较强的能力,结合其较高的性价比,在与本文类似的场景中可以进行尝试。

2025-07-31 11:12:22 869

转载 用DPO定制Nova模型攻略!适配个性化应用场景需求

定制后的模型可部署到Amazon Bedrock上,利用预置吞吐量进行推理。通过大量此类示例的训练,Amazon Nova模型不仅学会生成正确的函数调用语法,还能在复杂工作流中就何时以及如何调用工具做出细致入微的决策,从而提升其在客户支持自动化、工作流编排和智能数字助手等业务应用中的实用性。如下图所示,采用DPO技术,根据给定的用户查询和可用工具操作,向Amazon Nova模型展示成对的回复(其中一对回复中,一个更受人工标注员青睐,另一个则相对不受青睐),以此让模型契合人类偏好。

2025-07-30 12:36:40 42

转载 告别千篇一律跟团游!Bedrock帮助旅行社打造私人定制旅行,省心又自由

采用这种分层架构,旅行Agent能够收集客户需求,结合存储的客户偏好信息完善客户需求,并整合实时数据,从而提供符合客户需求的个性化推荐旅行方案。而这款基于生成式AI驱动的解决方案,巧妙地将个性化定制与实时数据集成相结合,使旅行社能够自动将客户的无障碍需求,与现有的旅行选择进行智能匹配,无论是升级旅行规划系统,还是应对复杂的客户需求,该解决方案都提供了一个切实可行的起点,并可根据具体业务需求提供明确的优化路径。该函数将查询知识库,利用模拟API获取实时航班信息,并生成符合客户特定需求和偏好的个性化推荐方案。

2025-07-29 12:23:55 68

转载 仅凭MSK迁移,FunPlus竟将运营成本降低50%?

亚马逊云科技解决方案架构师,负责基于亚马逊云科技云计算方案的咨询、架构设计及落地,拥有多年移动互联网研发经验,在云原生微服务以及云迁移等方向有丰富的实践经验。亚马逊云科技客户解决方案经理,在亚马逊云科技主要支持游戏和零售等行业的用户。FunPlus大数据架构师,在互联网与游戏行业从业14年,负责FunPlus整体大数据基建的云上架构设计和实施工作,具有丰富的实践经验。FunPlus运维负责人,在游戏行业从业15年,负责FunPlus整体业务的云上架构设计和实施工作,具有丰富的实践经验。

2025-07-29 12:23:55 56

原创 Amazon Bedrock Runtime API 集成指南——从 Invoke Model API 迁移到 Converse API,简化生成式 AI 应用开发

因此,我们建议您在满足业务要求的情况下迁移到 Converse API。2024 年 5 月,Amazon Bedrock 宣布了新的 Converse API,为开发者提供了一种统一的调用 Amazon Bedrock 模型的方式,消除了因模型特定差异(如推理参数差异)而带来的复杂度。2024 年 5 月,Amazon Bedrock 宣布了新的 Converse API,为开发者提供了一种统一的调用 Amazon Bedrock 模型的方式,消除了因模型特定差异(如推理参数)而带来的复杂度。

2025-07-29 10:01:29 709

转载 Q CLI+Jenkins秒变智检员,代码靠得住,开发更快速

Amazon Q Developer是亚马逊云科技推出的AI驱动代码助手,能够智能分析代码,识别潜在问题,并提供改进建议。Jenkins作为广受欢迎的开源自动化服务器,凭借其强大的插件生态系统和灵活的配置能力,已成为CI/CD流程的核心工具,能够自动执行构建、测试和部署等任务,与各种开发工具无缝集成。亚马逊云科技解决方案架构师,负责云计算解决方案的咨询和设计,具有丰富的解决客户实际问题的经验。亚马逊云科技解决方案架构师,专注于各行业的生成式AI解决方案的架构咨询和设计,具有丰富的云计算实践经验。

2025-07-28 11:01:33 52

转载 Polly+Transcribe打造电商语音客服,实现智能“嘴替”

在移动购物、客服咨询、商品推荐等典型交互场景中,用户频繁遭遇语调单一、回应僵硬、缺乏情感表达的语音服务,这种机械化的交互方式不仅降低了用户满意度,更制约了电商平台在客户关系管理方面的竞争优势。其统一的架构设计不仅可以消除传统流水线中的信息损耗和延迟,更通过实时交互和情感推理能力,提升对话的自然性和情感共鸣,为快时尚电商智能化转型注入新的动力。系统无法感知用户语音中的情绪变化,也无法在回应中体现相应的情感关怀,导致客户在遇到问题时感受到的是冷冰冰的机器回复,而非温暖的人性化服务。

2025-07-25 11:03:04 70

转载 MCP协议如何释放数据库价值潜力?5大场景实践带你揭秘

例如,取数逻辑中的余额表,字段“期初数_本位币_现金”,数据来源表1:会计科目表,数据来源表字段:会计科目名称,搜索值:现金。但是在线交易OLTP系统中,对数据要求实时访问,应用程序应该直接访问数据库,而不是通过MCP访问,否则每次数据库访问都需要大模型生成,速度自然慢很多,客户体验受到影响。在读写数据库时,自动调用数据库访问工具,构建SQL,创建表,写入数据,并根据业务需求,创建多个视图和分析查询,获取近期二手车的销售情况,包括车型、价格、销量。大模型生成的语句,有可能不能执行,或者执行结果不符合需求。

2025-07-24 11:03:32 70

原创 使用 Strands Agents 开发并部署生产级架构通用型个人助手

这是基于Strands Agents SDK开发的通用型Agentic AI应用,通过MCP的集成,实现了大语言模型与外部工具系统的无缝连接。Strands SDK作为核心引擎,提供了强大的代理能力和工具集成机制,使得整个系统具备了高度的可扩展性和实用性。📢 想要玩转 Strands Agents?速看最新试验!🌟《开源 Agent 框架 Strands Agents 速成班》推出新实验啦!该实验具有轻量级且灵活的开发方式,支持完全定制,还能访问数千预构建工具,让你体验构建智能应用新范式。⏩ [

2025-07-24 11:01:44 931

转载 深度拆解EC2实例安全运维最佳实践,筑牢防线不求人!

通过整合Amazon Inspector的漏洞发现能力、Systems Manager的补丁管理功能以及Amazon Security Hub的集中监控,这套完整的闭环管理体系,企业可以实现漏洞的自动发现、评估、修复和验证的完整闭环,显著提升安全防护能力。对比传统远程访问方案,Amazon EIC端点通过托管安全通道,实现对私有子网中Amazon EC2实例的访问,无需公网地址、堡垒机或VPN,并结合了基于身份和网络的访问控制、简化了连接流程、提供了完整的审计日志,且无需在目标实例安装额外代理。

2025-07-23 11:02:46 97

转载 解放双手,Q CLI助原力棱镜游戏开发效率飙升

在生成Amazon EKS集群创建命令时,Amazon Q Developer CLI根据开发者使用自然语言描述的Amazon EKS版本和亚马逊云科技区域,选择合适的参数,无需开发者查阅文档即可完成任务,并且这一过程是全自动的。它自动执行这一步骤,避免了因资源依赖关系导致的删除错误,这是缺乏经验的开发者常犯的错误。Amazon Q Developer CLI不仅能完成环境搭建,还能自动生成便于后续维护的工具脚本,比如用于更新容器镜像版本的shell脚本,这进一步降低了开发者的操作门槛。

2025-07-23 11:02:46 65

原创 从分析到优化:Amazon Q CLI 助力 EKS 网络调用链剖析与运维实践

这是因为当更新 Service 的 selector 时,kube-proxy 更新 iptables 规则,但 Linux 内核的 conntrack 模块会保持现有的连接记录,直到这些连接超时或被显式清除。这些保持的连接状态会导致已建立的流量继续被发送到旧的 Pod。当用户部署了新的 deployment 并通过更新 Service 的 pod selector 切换到新 deployment 时,会出现一个持续数秒到数分钟的时间窗口,流量仍然会导向旧的 Pod,导致应用行为不一致或错误。

2025-07-22 16:18:44 618

转载 元数据服务全面覆盖S3对象,大规模数据集管理无忧

借助Amazon S3元数据的实时库存表,您可获得一个由系统全托管且基于Apache Iceberg的表格,该表格能提供存储桶中对象及其元数据的完整且最新快照,并且得益于回填支持,现有对象也包含在内。您既能实时掌握存储情况的最新动态,又能获取变更记录,且这两类数据均以Iceberg表的形式呈现,方便您按需查询,帮助您更快速发现数据,为合规性工作流程提供有力支持,并优化机器学习管道。对于库存表,为设置表格并为现有对象生成元数据,如果您的存储桶中的对象数量少于十亿个,则无需支付额外费用。

2025-07-22 11:31:32 67

转载 破解Aurora全球数据库密码自动轮转难题,支付合规一步到位

热爱技术,追求卓越,乐于分享交流。Amazon Aurora全球数据库是Amazon Aurora的高级功能,允许单个Amazon Aurora数据库跨多个亚马逊云科技区域,提供低延迟的全球读取和灾难恢复能力。该解决方案解决了Amazon Aurora全球数据库不支持原生密码轮转的挑战,同时考虑了全球复制延迟的问题,有效满足了PCI-DSS 8.2.4的密码定期轮转要求。该解决方案遵循亚马逊云科技安全最佳实践,并考虑了Amazon Aurora全球数据库的特殊性,同时满足PCI-DSS合规要求。

2025-07-22 11:31:32 78

转载 效率就是生命:Bedrock Agents加速生物标志物分析与发现

本文将展示一个以肺癌生存分析为实例的端到端工作流程,涵盖数据库查询、影像处理和临床证据检索等,并公开相关代码,您可在GitHub上获取。为了回答上述问题,科研人员通常会使用多模态数据,包括临床数据、基因组数据和计算机断层扫描(CT)成像数据,运行生存分析流程,如下图所示。,可连接API和各类数据源,自动化执行文献检索、统计分析、可视化生成等多步骤任务,帮助研究者以自然语言驱动分析流程。生物标志物是血液、体液或组织中能反映健康或疾病状态的分子,如肺癌的EGFR、乳腺癌的HER2 和前列腺癌的PSA。

2025-07-21 14:01:17 57

转载 Nova模型这四大定制化技术,满足你的个性需求

提供了一种简单直接的方法,通过使用“偏好或不偏好”的回应对,来微调模型输出。虽然提示词优化和检索增强生成(RAG)技术,在将通用FM集成至应用程序方面效果良好,但对于关键业务工作流程而言,则需要对模型进行定制化处理,以确保模型满足特定的准确性、成本控制和延迟要求。接下来,您可选择一种微调方案,利用带标签的数据对模型进行训练,以提升其在特定任务上的表现,并使其符合期望的行为模式。针对不同模态和部署选项,可用的定制化技术如下表所示,每种技术都根据您的实施需求,提供了特定的训练和推理能力。

2025-07-21 14:01:17 69

转载 全新AI开发工具Kiro首次亮相AdventureX 2025!

不管您是AI工程师、产品开发者,还是正在孵化下一个好点子的技术达人,Kiro都能成为您的秘密武器,帮你把创意变成现实。它不仅能帮您用Prompt快速搭建原型,还能一步步把AI应用推向生产环境,实现从想法到上线的全流程交付。亚马逊云科技技术专家现场分享Kiro背后的设计思路,手把手带您一起体验从概念到产品真实落地的体验。亲手体验从Prompt到上线的全过程,感受规格驱动开发的魅力。在AdventureX,我们不是在看未来,而是在一起造未来。这里,我们一起打破边界,碰撞灵感,打造属于自己的AI世界。

2025-07-21 11:03:44 150

转载 再添三大新功能!SageMaker加速数据价值转化

内部,直接对这些资产进行管理、管控和使用,在统一技术与业务元数据的同时,还能应用与其他数据类型相同的治理策略和访问控制机制,确保管理的一致性和规范性。在项目中,您可以将它们发布到Amazon SageMaker Catalog,并与企业目录中的用户或用户组共享,从而确保了仪表盘在。连接成功后,您能够浏览可访问的文件夹,并通过选择存储桶或文件夹,并点击“发布到目录”来创建可被查找的数据资产。您既可自动导入湖仓架构中现有的结构化数据,又能无缝编目Amazon S3中的非结构化数据内容,还能通过。

2025-07-19 10:02:05 62

转载 重磅推出Bedrock AgentCore!高效部署与运行AI Agents

针对兼容OAuth 2.0的工具与服务,当用户首次授权Agent代表其执行操作时,AgentCore Identity会收集该工具颁发给用户的token,并将其存储在自己的安全存储库中,同时还会安全存储Agent的OAuth客户端凭证。当这些原型向公司管理层展示并获得继续推进的支持许可后,开发团队就必须明确如何将其投入生产环境,并满足安全性、性能、可用性和可扩展性等常规要求,而这正是AgentCore能够发挥作用的地方。支持低延迟的交互体验,并可处理长达8个小时的复杂异步工作负载,时长居业内领先。

2025-07-18 11:03:32 439

转载 来了!TwelveLabs视频理解模型登陆Bedrock

无论您拥有数百小时还是数千小时的视频内容,都能将整个视频库转化为可搜索的知识资源,同时确保企业级的安全性和性能表现。点击“选择模型”,将类别选为“TwelveLabs”,模型选为“Pegasus”,然后点击“应用”。在开始使用前,如果您是首次接触TwelveLabs模型,请前往Amazon Bedrock控制台,在左下角的导航面板中选择“模型访问”。,自动生成标题、主题、话题标签、摘要、章节或精彩片段等描述性文本,无需预先设定标签或分类,即可快速挖掘视频中的关键信息与内在关联。

2025-07-17 14:23:51 85

原创 基于 Amazon Nova Sonic 和 MCP 构建语音交互 Agent

Amazon Nova Sonic 要实现 MCP 这种方式的工具调用,首先需要将函数/工具的描述信息 schema 输入给 LLM,只不过 Function Call 是在本地生成函数描述的,而 MCP 则是远程从 MCP Server 中自动拉取的工具描述,远程 MCP Server 端有哪些工具的描述,是基于 Server 端工具在开发时用注解的方式描述函数名、用途和参数信息来自动生成的。随着语音界面的不断发展,像这样的解决方案将在创建更自然、更直观的用户与技术交互方式方面发挥越来越重要的作用。

2025-07-17 09:50:12 1055

转载 Amazon S3 Vectors上线,向量数据查询成本直降90%

您可参阅《Amazon S3用户指南》中关于“Amazon S3向量存储桶”和“Amazon S3向量索引”的相关内容,深入了解如何将向量插入向量索引,以及如何列出、查询和删除向量。在第三步中,您可以选择向量存储的创建方式:既可以选择创建新的Amazon S3向量存储桶和向量索引,也可选择使用已创建好的现有Amazon S3向量存储桶和向量索引。创建向量索引后,在向该索引添加向量数据时,您还可为每个向量附加上键值对形式的元数据,以便后续根据日期、类别、用户偏好等一系列条件,对查询结果进行筛选。

2025-07-16 17:11:14 136

转载 准确率从19%飙升至95%!文本审核模型优化实战指南|下篇

在每个训练批次中,函数执行梯度清零操作,将数据转移到指定设备上,进行前向传播计算模型输出和损失值,接着通过反向传播计算梯度,利用梯度裁剪防止梯度爆炸,然后更新模型参数并调整学习率,同时更新进度条以展示训练进度。然而,在本项目中训练数据规模相对有限,这种情况下,较小的Base模型反而展现出更好的适应性,能够在有限数据条件下达到更优的性能表现。同时,积极收集新的训练数据,用于模型更新迭代,持续监控不同语言和文化背景下的审核效果,以保证审核系统始终保持良好的性能状态。等主流框架,满足多样化的训练需求。

2025-07-16 11:01:13 79

转载 准确率从19%飙升至95%!文本审核模型优化实战指南|上篇

在抽样过程中,着重保证样本能够涵盖不同类型的内容,囊括丰富多样的表达方式,同时兼顾不同语言以及文化背景下的用户资料,以此获取多元且具典型性的分析样本。再利用Claude模型探究每种误判类型的特性与模式,制定专属改进策略和规则,最后将策略转化为审核指南和提示词,生成分析报告,部署新的提示词。只有当表述满足多重明确条件时,才触发违规判定,避免因模糊语义导致的误判,使规则更具精准性和严谨性。将拟定的改进策略转化为详尽的审核指南及提示词,产出结构化的分析报告与优化后的提示词,并在审核系统中部署新生成的提示词。

2025-07-16 11:01:13 94

转载 借力Bedrock,SolveX.AI炼成闪电解题神器?

通过将流量动态智能路由到多个区域,确保在需求高峰期获得更高的吞吐量和增强的弹性。曾在通信、电商、互联网等行业有多年的产研经验,在数据科学、推荐系统、LLM、RAG等方面有丰富的实践经验,并且拥有多个AI相关产品技术发明专利。类似几何证明、物理力学等题型,往往涉及多步推理、图文混合输入和隐含条件的识别,传统模型在步骤完整性和准确性方面表现有限,难以满足高质量解题的需求。,不仅支持文本、图像、视频等多种输入,还能以远低于同类大模型的成本和更快的响应速度,满足教育等复杂场景对高并发、实时性和多语言的需求。

2025-07-15 11:02:54 46

原创 Amazon Q in QuickSight 实战:利用自然语言快速生成数据报表与洞察

在企业实践中,数据分析已成为推动业务增长和优化决策的核心能力。以电商为例,团队需要实时查看商品销量趋势、不同渠道的转化效果、用户浏览路径与复购行为;在运营或财务场景中,也常通过图表洞察成本结构、预算执行进度、活动投放回报等。这些关键指标往往通过 BI 报表以可视化方式呈现,让业务人员能更直观、更高效地理解数据背后的含义。📢限时插播:Amazon Q Developer 来帮你做应用啦!🌟10分钟帮你构建智能番茄钟应用,1小时搞定新功能拓展、测试优化、文档注程和部署⏩快快点击进入《

2025-07-15 10:10:35 687

转载 ICML 2025|亚马逊10篇论文入选,展现AI领域研究实力

这些研究涵盖了文本到音频生成、大模型提示词优化、智能体技术以及多智能体强化学习等多个前沿领域。在机器学习领域极具影响力的学术会议ICML 2025上,亚马逊共有10篇论文被成功录用。本次会议将于北美太平洋时间7月13日至19日,在加拿大温哥华会议中心举行,亚马逊作为白金赞助商将全面展示其在人工智能领域的最新研究成果。星标不迷路,开发更极速!听说,点完下面4个按钮。就不会碰到bug了!

2025-07-14 17:00:00 99

转载 效率提升150%!翰德基于MCP Agent重塑智能招聘新范式

翰德是一家卓越的人才解决方案提供商,专注于中高端人才招聘、灵活人才解决方案等服务,覆盖金融服务、消费品、医疗健康与生命科学、科技、工业、专业服务、人力资源、财务与会计、法律与合规、供应链与采购等多个行业与职能领域。翰德Hudson的实践为人力资源行业数字化转型提供了可复制的范例,推动了生成式AI在招聘垂直领域的创新应用,构建了人机协作的新模式,助力行业迈向更加智能、高效的未来。自动抓取招聘平台返回的分页数据,处理动态分页加载,提取职位名称、公司信息、发布时间及匹配度标签等关键信息,确保数据完整性和准确性。

2025-07-14 11:02:20 87

转载 1+1>2!全新服务加速数据库云迁移

您可访问亚马逊云科技控制台,或在亚马逊云科技Marketplace申请专属报价。您的亚马逊云科技和Oracle销售团队会收到您的申请并随后与您联系,为您的工作负载找到最佳方案,激活您的账户。亚太地区(海得拉巴)、亚太地区(墨尔本)、亚太地区(孟买)、亚太地区(大阪)、亚太地区(首尔)、亚太地区(新加坡)、亚太地区(悉尼)、亚太地区(东京)、加拿大(中部)的定价信息,以及在亚马逊云科技Marketplace上的任何专属优惠价,均由Oracle设定,您可在Oracle定价页面查看该产品定价详情。

2025-07-11 11:03:21 51

转载 1+1>2!全新服务加速数据库云迁移

您可访问亚马逊云科技控制台,或在亚马逊云科技Marketplace申请专属报价。您的亚马逊云科技和Oracle销售团队会收到您的申请并随后与您联系,为您的工作负载找到最佳方案,激活您的账户。亚太地区(海得拉巴)、亚太地区(墨尔本)、亚太地区(孟买)、亚太地区(大阪)、亚太地区(首尔)、亚太地区(新加坡)、亚太地区(悉尼)、亚太地区(东京)、加拿大(中部)的定价信息,以及在亚马逊云科技Marketplace上的任何专属优惠价,均由Oracle设定,您可在Oracle定价页面查看该产品定价详情。

2025-07-11 11:03:21 40

如何在亚马逊云科技云服务上构建千万级用户应用

这个演讲将讨论如何如何充分利用云平台的特性和亚马逊云科技的相关服务来构建一个可以支撑千万级用户的应用。通过讨论不同用户数量级别的应用需求和架构特点,然后结合不同的亚马逊云科技云服务来满足用户访问,并最终逐渐把架构优化成为可以支持千万级用户的设计。这个演讲的目的是帮助对AWS服务有一定基础的用户进一步理解服务之间的差异以及基于AWS云平台构建高扩展性应用的关键服务及其使用注意事项。

2015-09-22

方国伟:基于亚马逊云科技的云灾备设计

通过基于亚马逊云科技云服务构建灵活、低成本的灾备方案,给企业带来一个保障业务连续性的创新方法。有研究表明,相对于传统灾备方案,基于云计算的灾备方案可以帮助企业最多节约85%的成本。在这个讲座中,我们首先讨论与灾备方案相关的亚马逊云科技基础服务,包括计算、存储、网络和数据库服务;然后我们会从技术的角度讨论常见的灾备架构以及它们的具体实现方式,从备份/恢复、“信号灯”方式、热备方式到多站点方式。

2014-05-29

Netflix在亚马逊云科技上的应用和创新

从2009年开始,Netflix逐渐把她的IT系统迁移到亚马逊云科技云服务,并开始进行业务转型——从DVD租赁演变为在线视频供应商。目前,在高峰期间Netflix的互联网下载流量已经占到北美地区的三分之一,而支撑Netflix的整个IT系统基本上构建在亚马逊云科技云上。

2014-05-29

360度解析亚马逊云科技存储服务V2

综合使用多种亚马逊云科技的存储服务能够帮助用户构建出一个高可用、弹性和可扩展的云计算应用。这个在线讲座将从互联网时代数据存储的多种需求出发,逐一讲解亚马逊云科技所提供的多种数据存储服务,包括完全基于非结构化数据存储的简单存储服务(S3),侧重于磁盘性能的弹性块存储(EBS)以及传统的关系型数据库服务和NoSQL数据库服务等,并以客户案例为例说明这些服务的实际应用场景。

2015-09-22

基于亚马逊云科技云服务的高可用应用设计 v1.0

云计算在给架构师带来了许多新的设计挑战的时候,也给带来了许多新的设计理念和可用的服务。如何在设计应用的时候充分利用云平台的各种特点是基于云平台设计的一个重要因素。在这个演讲中,我们将以亚马逊AWS云平台为例,讨论如何设计一个高可用应用。我们先会对AWS的服务进行高可用性的分类,并从高可用角度对典型服务进行介绍,然后依次讨论高可用设计的5大常见设计原则,并结合亚马逊云科技的相关服务依次进行架构设计分析。

2014-05-29

亚马逊云科技云服务入门介绍_方国伟

第一讲:亚马逊云科技与服务入门介绍 § 了解亚马逊云科技云计算概览及价值主张 § 了解亚马逊云科技云服务服务的特点:灵活、高效、弹性以及安全性 § 了解亚马逊云科技云服务的基础知识,包括亚马逊云科技的计算、存储、网络、数据库和大数据等服务概况

2014-05-29

方国伟:亚马逊云科技云服务的发展和创新

这部分讲述亚马逊云科技的发展背景和目前进展情况,主要包含三个方面:首先是介绍亚马逊云科技云服务的整体服务情况以及她的最新发展状况;然后以与亚马逊云科技相关的创新为例讲述亚马逊独特的创新文化;最后讲述亚马逊云科技如何针对大型企业的需求而推出的各种企业级服务和支持,从而满足不同类型客户的各种需求。

2014-05-29

亚马逊云科技的互联网存储服务

这是我们在2014年SNW大会上的演讲稿。我们正在进入数字化生存时代,因此如何保存爆炸性增长的数据是一个挑战。在移动互联网时代,我们需要面向互联网的存储。大数据需要像S3这样面向互联网的数据存储方式。S3为用户提供简单易用、安全可靠、海量的存储服务!

2015-09-22

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除