自动驾驶规划控制(PnC)技术详解与实战

更新日期:2025-05-27

零. 课程导论:开启自动驾驶的智慧之门

本导论旨在宏观介绍自动驾驶规划与控制(Planning and Control, PnC)领域。我们将明确其在自动驾驶技术栈中的核心地位,阐述其关键任务和面临的主要挑战,并为后续课程的学习目标与路径提供指引。我们将从引人入胜的行业背景出发,逐步深入到PnC的定义、核心模块、技术难点、算法体系及框架演进,最终落脚于本课程的定位和学习方法。

0.1 引言:为何学习自动驾驶PnC?

自动驾驶技术正以前所未有的速度发展,深刻影响着全球交通运输、物流配送乃至人们的日常出行方式。它不仅仅是技术的革新,更预示着一场社会层面的变革。在这场变革中,规划与控制(PnC)系统扮演着至关重要的角色——相当于自动驾驶车辆的“大脑”,直接决定了车辆行驶的安全性、舒适性和效率。正如一项研究指出的,自动驾驶汽车被视为交通运输领域的一项变革性创新,有望极大提升道路安全和效率 ScienceDirect (S0957417423033389)。尤其值得注意的是,根据英国肯特郡议会最近的一份报告,大约95%的车祸是由人为失误造成的 ScienceDirect (S0957417423033389),这凸显了自动驾驶技术在减少交通事故方面的巨大潜力。

本课程的目标是引领学员系统性地掌握PnC的核心理论,洞悉学术界和工业界的前沿算法,并通过实践培养解决实际问题的能力。通过学习,学员将能够理解PnC系统如何使车辆在复杂动态的环境中做出明智决策,并精确执行这些决策。

0.2 定义自动驾驶规划与控制(PnC)

精确定义:自动驾驶规划与控制(PnC)是指车辆根据感知系统获取的实时环境信息(如其他车辆、行人、交通信号灯、道路边界等)、高精度地图数据(HD Map)以及全局导航指令(如目的地),自主地进行驾驶决策(例如,是否换道、何时超车)、行为规划(确定一系列驾驶动作)、路径规划(生成具体的行驶轨迹),并最终生成精确的控制指令(如油门、刹车、转向角度)以操控车辆按照预定轨迹安全、平稳、高效行驶的全过程。

在自动驾驶系统架构中的位置:一个典型的自动驾驶系统通常可以划分为感知(Perception)、定位(Localization)、规划与控制(Planning & Control)以及执行(Actuation)四大核心模块。PnC模块在这一架构中起着承上启下的关键作用:

  • 上游:它接收来自感知模块的环境模型(如障碍物列表、可行驶区域)和定位模块的车辆自身状态(如精确位置、姿态、速度)。
  • 下游:它输出控制指令给车辆的执行机构(如发动机、制动系统、转向系统)。

可以说,PnC是将“看清世界”和“知道在哪”转化为“如何行动”的核心纽带。

图 0.1: PnC在自动驾驶系统架构中的位置示意图

0.3 PnC的核心任务:智能决策、安全规划与精准控制的协同

PnC系统内部通常也包含多个子模块,它们协同工作,完成从宏观意图到微观操控的转化。主要包括行为决策、路径/运动规划和运动控制三个层面。

  • 行为决策(Behavioral Decision-Making)
    • 任务:在宏观层面解决车辆“做什么”(What to do)的问题。例如,在当前交通状况下,车辆应该保持当前车道行驶、准备向左换道、开始超车、减速跟上前车、在路口等待红灯,还是紧急避开突然出现的障碍物。行为决策需要对周围环境(特别是其他交通参与者的行为)进行理解和预测,并依据交通规则和安全原则做出高层级的行为选择。一篇关于自动驾驶决策规划的综述文章指出,“行为决策处理对临时事件的响应,例如其他车辆的异常驾驶行为、行人突然横穿马路以及紧急车辆避让” FrontiersInNeurorobotics (10.3389/fnbot.2025.1451923)
    • 输出:高层级的驾驶行为指令,如“保持车道”、“向左换道”、“停车”等。
  • 路径/运动规划(Path/Motion Planning)
    • 任务:在行为决策的指导下,解决车辆“怎么走”(How to go)的问题。它负责生成一条或多条从当前位置到局部目标点的几何上可行、安全、平滑,并且符合车辆运动学(kinematics)和动力学(dynamics)约束的行驶轨迹。这个过程需要详细考虑道路几何形状、静态和动态障碍物、交通规则等。例如,确定换道的具体轨迹曲线,或者在避障时绕行障碍物的路径。相关研究如 MDPI 的一篇论文关注运动规划与控制 MDPI (2079-9292/12/23/4881),以及 IET 的一篇综述也强调了轨迹生成和路径规划的重要性 IET (tje2.12333)
    • 输出:一个包含一系列时空坐标点(通常包括位置x, y、速度v、加速度a、航向角θ、曲率κ等信息)的轨迹序列。
  • 运动控制/轨迹跟踪(Motion Control/Trajectory Tracking)
    • 任务:解决车辆“如何精确执行”(How to execute precisely)规划好的轨迹的问题。它设计控制器(如PID、LQR、MPC等),将规划模块输出的期望轨迹与车辆的实际状态进行比较,计算出必要的油门、刹车和转向角度等控制量,以最小化跟踪误差,确保车辆尽可能精确地沿着规划轨迹行驶,同时保证行驶的平顺性和舒适性。一篇关于深度强化学习在自动驾驶中应用的综述提及了控制器学习(Controller learning)arXiv (2002.00444),这表明了控制层面也在不断引入新的技术。
    • 输出:发送给车辆底层执行器(油门踏板、制动系统、转向电机等)的具体控制命令。

三者之间的逻辑关系与信息流:这三个子模块通常呈层级关系:行为决策层输出高层驾驶意图,指导路径/运动规划层生成具体的可行轨迹,规划层输出的期望轨迹则作为运动控制层的输入参考,控制层最终输出驱动车辆的指令。在一些高级系统中,也可能存在反馈闭环,例如,如果规划层无法在当前决策下找到安全路径,或者控制层发现轨迹难以跟踪,信息会反馈给上层模块以调整决策或重新规划。

PnC核心任务协同机制
  • 行为决策:顶层指挥官,决定“做什么”,考量交通博弈与安全法规。
  • 路径/运动规划:中层参谋部,根据指挥意图规划“怎么走”,生成具体时空轨迹。
  • 运动控制:底层执行单元,确保“精确执行”,将轨迹转化为车辆动作。
  • 三者紧密耦合,信息逐级传递,并可能存在跨层反馈以应对动态变化。

0.4 PnC面临的关键挑战:动态环境、不确定性与极致安全

实现高效、可靠、安全的自动驾驶PnC系统面临诸多严峻挑战,这源于真实交通环境的复杂性和自动驾驶对安全性的极致要求。正如一篇研究指出的,完全自动驾驶仍然是一项涉及感知、视觉与图像处理、轨迹生成、路径规划、决策、建模和自动控制等多个领域挑战性方面的复杂任务 IET (tje2.12333)

  • 复杂动态环境的理解与交互:城市交通环境充满了不确定性,包括行人、自行车、其他机动车等多种交通参与者。它们的行为往往难以精确预测(例如,行人突然横穿马路、车辆不规范变道)。PnC系统必须能够实时理解这种动态环境,并与其他参与者进行安全、高效的交互。
  • 感知与定位的不确定性:感知系统(如摄像头、激光雷达、毫米波雷达)的测量数据不可避免地带有噪声,甚至可能出现漏检、误检。定位系统(如GPS/IMU)也存在定位误差或漂移。这些不确定性会直接传递到PnC系统,影响决策和规划的可靠性。
  • 高精度地图(HD Map)的依赖与更新:目前高级别的自动驾驶很大程度上依赖高精度地图提供详细的先验环境信息(如车道线、交通标志、路沿等)。然而,地图的制作成本高昂,覆盖范围有限,且真实世界的道路状况会不断变化(如施工、新增标志),地图的实时更新和维护是一个巨大挑战。
  • 实时性与计算资源限制:自动驾驶车辆需要在极短的时间内(通常是毫秒级别)完成感知、决策、规划和控制的整个循环,以应对突发情况。然而,车载计算平台的算力、功耗和存储空间都是有限的,这对PnC算法的效率提出了极高要求。
  • 保证功能安全(Functional Safety)与预期功能安全(SOTIF):功能安全主要关注系统失效导致的风险(如软硬件故障),而预期功能安全则关注系统在没有故障但由于功能不足或外部环境超出预期(如传感器在恶劣天气下性能下降、遇到罕见的交通场景)时可能引发的风险。PnC系统需要在这两方面都做到极致,尤其要妥善处理各种边缘案例(corner cases)。
  • 算法的泛化能力与鲁棒性:PnC算法不仅要在训练或测试环境中表现良好,更重要的是能够在各种未曾见过的新场景、不同城市风格、不同天气条件(雨、雪、雾)、不同光照条件(强光、弱光、夜晚)下保持稳定、可靠的性能。

0.5 主流PnC算法技术概览

针对上述挑战,学术界和工业界发展了多种PnC算法。这些算法各有特点,适用于不同的场景和需求,大致可分为以下几类:

  • 传统/基于规则的方法
    • 典型算法:有限状态机(Finite State Machines, FSM)、决策树、行为树。
    • 特点:基于人类专家经验和交通规则进行逻辑编码。优点是逻辑清晰、易于理解、验证和调试,行为具有可解释性。缺点是规则设计复杂,难以覆盖所有复杂和长尾场景,维护成本高,适应性差。
  • 搜索/采样算法
    • 路径规划:A*(A-star)及其变种(如D* Lite, Hybrid A*)、State Lattice Planner(状态栅格规划器)。
    • 运动规划:快速扩展随机树(Rapidly-exploring Random Tree, RRT)及其优化版本(如RRT*, Informed RRT*, RRT-Connect)、概率路图(Probabilistic Roadmap, PRM)。
    • 特点:这些方法通过在状态空间中搜索或采样来寻找可行路径。A*等图搜索算法在离散空间中能保证最优性或有界次优。RRT等采样算法在连续高维空间中具有概率完备性,能有效探索复杂环境。缺点是计算量可能较大,尤其是在密集障碍物或高维空间中,实时性可能成为瓶颈。RRT生成的路径初始质量往往不高,需要后平滑处理。
  • 优化算法
    • 典型算法:模型预测控制(Model Predictive Control, MPC)、线性二次调节器(Linear Quadratic Regulator, LQR)及其迭代版本(如Iterative LQR (iLQR), Constrained iLQR (CILQR))、二次规划(Quadratic Programming, QP)、动态规划(Dynamic Programming, DP)。
    • 特点:将规划问题表述为一个在满足各种约束(如车辆动力学、碰撞避免、舒适性)下的优化问题。MPC通过在线滚动优化,能够很好地处理约束和预测未来状态,实时性较好。LQR适用于线性系统或非线性系统的局部线性化。这类方法通常能生成较为平滑和高质量的轨迹,但对系统模型的准确性有一定要求,且对于非凸优化问题求解可能困难或耗时。
  • 机器学习/数据驱动的方法
    • 模仿学习(Imitation Learning, IL):包括行为克隆(Behavioral Cloning, BC)和逆强化学习(Inverse Reinforcement Learning, IRL)。 一篇Frontiers in Neurorobotics的文章讨论了数据驱动方法如模仿学习和强化学习。
    • 强化学习(Reinforcement Learning, RL):如Q-Learning, Policy Gradient方法 (REINFORCE, A2C, A3C), Actor-Critic方法 (DDPG, PPO, SAC)。 arXiv:2404.00340 是一篇关于DRL在路径规划与控制中应用的综述,而 arXiv:2002.00444 也提供了DRL在自动驾驶中的全面调研。
    • 深度学习(Deep Learning, DL):通常与IL或RL结合,利用卷积神经网络(CNN)处理图像输入,循环神经网络(RNN)或Transformer处理序列数据和时序依赖。
    • 特点:这类方法试图让车辆通过从大量数据中学习来获得驾驶策略。模仿学习通过学习专家驾驶行为来模仿人类驾驶员。强化学习通过与环境交互,根据获得的奖励或惩罚来优化自身策略。优点是能够处理非常复杂的场景,学习到传统方法难以设计的隐式规则和策略,适应性强。缺点是通常需要大量的训练数据(尤其是高质量的专家数据或大量的仿真交互),模型可解释性差(“黑箱”问题),训练不稳定,安全性验证和泛化能力是巨大挑战。
  • 混合方法
    • 特点:结合上述不同类型算法的优点,取长补短。例如,用强化学习进行高层行为决策,然后用基于搜索或优化的方法进行具体的轨迹规划;或者用基于规则的方法处理确定性场景,用学习方法处理不确定性较高的场景。

图 0.2: 主流PnC算法技术特点对比 (示意图)

0.6 自动驾驶系统框架:模块化、端到端与集成化演进

自动驾驶系统的软件架构设计对其整体性能、开发效率和可维护性至关重要。在PnC领域,主要存在以下几种架构范式:

  • 模块化/分层架构(Modular/Hierarchical Pipeline)
    • 介绍:这是最经典也是目前工业界应用较广的架构。它将自动驾驶任务分解为一系列相对独立的子模块,如感知、定位、决策、规划、控制等,这些模块串行或并行工作,通过明确定义的接口进行信息传递。
    • 优点:各模块职责清晰,便于独立开发、测试、验证和迭代升级;系统具有较好的可解释性,出现问题时易于定位和调试;不同模块可以采用最适合的技术方案。
    • 缺点:模块间接口设计复杂,信息传递可能存在延迟和损失;各模块的优化是局部的,子模块的最优不一定能保证系统全局最优;误差会逐级累积,即“误差传播”效应,例如感知模块的微小误差可能在规划模块被放大,导致不安全行为。一篇IEEE Xplore的文章指出了模块化流水线的性能瓶颈,特别是在城市驾驶场景中,模块间的有效通信和协调至关重要,但也可能造成瓶颈,减慢系统响应时间,并且模块化流水线容易受到错误传播的影响 IEEE Xplore (10114943)
  • 端到端架构(End-to-End, E2E)
    • 介绍:与模块化思路相反,端到端架构试图用一个(通常是深度神经网络)模型来直接实现从原始传感器输入(如摄像头图像、激光雷达点云)到车辆控制指令(如转向角、油门/刹车)的映射。
    • 优点:极大地简化了系统设计,避免了复杂的模块划分和接口定义;减少了人工设计和调参的工作量;理论上可以通过联合优化整个系统来达到超越模块化设计的性能,有可能发现人类工程师未曾想到的高效策略。
    • 缺点:模型通常是“黑箱”,可解释性差,难以理解其决策过程,这给安全性验证和调试带来了巨大挑战;对训练数据量和数据质量要求极高,且数据收集和标注成本昂贵;模型的泛化能力是关键问题,在训练数据未覆盖的场景(尤其是长尾场景)下表现可能急剧下降;难以集成先验知识(如交通规则)。arXiv:2307.04370 提供了一篇关于端到端自动驾驶的综述。一篇CSDN博客文章也解读了分层端到端自动驾驶 CSDN (Hierarchical E2E),指出其将感知、预测和规划集成在一个框架内。
  • 集成式/混合式架构(Integrated/Hybrid)
    • 介绍:这类架构试图结合模块化和端到端架构的优点,避免其各自的缺点。它可能表现为部分模块的高度集成(例如,将感知与预测紧密耦合,或者规划与控制一体化设计),或者是在模块化框架中引入学习能力更强的组件,或者是以某个核心任务(如规划)为导向进行多任务的联合学习。
    • 目标:在提升系统整体性能和智能水平的同时,保持一定程度的可解释性、可验证性和鲁棒性。
    • 示例:如UniAD框架 blog.csdn.net (UniAD),它提出一个统一的自动驾驶算法框架,旨在通过多任务范式优化自动驾驶的规划任务,认为重点应设计一个最优的框架服务于自动驾驶的Planning任务,以避免传统多任务方法中误差累积或任务间协同不足的问题。

框架对比与趋势分析:目前,模块化架构因其成熟度和可控性仍在量产中占据主导地位。端到端架构在学术研究和特定场景(如封闭园区低速物流)中展现出潜力,但大规模商业化仍面临挑战。集成式/混合式架构被认为是未来的重要发展方向,通过更紧密的模块耦合和数据驱动的优化,有望实现性能和可靠性的平衡。趋势表明,未来的系统可能会从严格的分层架构向模块间耦合更紧密、信息共享更充分的集成式架构演进,同时借鉴端到端学习的思想来优化关键模块或整个系统的性能。

图 0.3: 不同自动驾驶框架特性对比

自动驾驶系统框架演进要点

  • 模块化架构:当前主流,易于开发维护,但存在误差累积和局部最优问题。
  • 端到端架构:潜力巨大,简化设计,但可解释性差,数据依赖严重,安全性验证难。
  • 集成式/混合式架构:未来趋势,力求平衡模块化与端到端的优缺点,提升整体性能与可靠性。
  • 核心挑战在于如何在日益复杂的系统中确保安全性、鲁棒性和可解释性。

0.7 PnC技术发展趋势与前沿展望

自动驾驶PnC技术正处在快速发展和演进之中,未来几年预计将出现以下重要趋势:

  • 数据驱动与模型驱动的深度融合:纯粹的模型驱动方法难以应对所有真实世界的复杂性,而纯粹的数据驱动方法又缺乏可解释性和安全性保障。未来的趋势是将两者的优势结合起来,例如,利用大数据和深度学习来优化传统模型的参数、学习复杂环境的交互模型,或者在数据驱动的框架中嵌入物理约束和先验知识,以提升模型的性能、鲁棒性和可解释性。
  • 基于世界模型(World Model)的规划与决策:当前多数系统对环境的理解仍停留在表层。世界模型旨在构建对环境(包括动态物体行为、物理规律、因果关系等)更深层次的理解和预测能力。基于这样的模型,PnC系统可以进行更长远、更准确的规划和推理,做出更智能的决策,甚至在部分感知信息缺失时也能进行合理推断。
  • 可解释性AI(Explainable AI, XAI)在PnC中的应用:随着PnC系统中机器学习(尤其是深度学习)模型的广泛应用,其“黑箱”特性带来的信任和验证问题日益突出。XAI技术旨在提高模型的透明度和可解释性,帮助我们理解模型为何做出特定决策,这对于调试、验证、优化模型,以及满足法规要求和增强公众信任至关重要。
  • 车路协同(Vehicle-to-Everything, V2X)规划与控制:通过V2X通信技术(包括V2V车辆间通信、V2I车与基础设施通信、V2P车与行人通信、V2N车与网络通信),自动驾驶车辆可以获取更广范围、更及时的环境信息(如其他车辆的意图、交通信号灯的相位和配时、道路拥堵状况、前方事故等),甚至可以接收协同控制指令。这将极大扩展PnC系统的感知范围和决策依据,实现超越单车智能的协同式驾驶,提高交通效率和安全性。
  • 仿真与大规模测试验证技术:真实道路测试成本高昂、耗时长且难以覆盖所有场景(尤其是危险的长尾场景)。高效、逼真的仿真平台和自动化的场景生成技术对于PnC算法的开发、迭代、测试和验证变得越来越重要。未来的仿真技术将更加注重物理真实性、传感器模拟精度、交通流复杂性和边缘场景的构建能力。
  • 对长尾问题(Long-tail Problem)的处理能力:长尾问题指的是那些发生频率极低但一旦发生就可能导致严重后果的罕见场景。提升PnC系统在这些未知或未充分训练场景下的安全应对能力,是实现大规模商业化的关键。这可能需要结合更强的泛化学习能力、异常检测机制、安全冗余策略以及持续学习方法。

0.8 本课程目标、内容结构与学习路径

  • 课程目标
    1. 全面理解:帮助学员全面、系统地理解自动驾驶规划与控制(PnC)的核心概念、技术体系、关键挑战和前沿趋势。
    2. 掌握原理:深入掌握主流行为决策、路径规划和运动控制算法的基本原理、数学基础、优缺点及适用场景。
    3. 提升能力:培养学员分析和解决实际PnC问题的能力,包括场景理解、算法选型、参数调试和性能评估。
    4. 实践技能:使学员具备动手实现和调试基础PnC算法的能力,能够使用常用仿真工具进行实验验证。
  • 内容结构概览(后续章节将详细展开):
    • 第一部分:行为决策(Behavioral Decision-Making):基于规则、状态机、博弈论、MCTS及学习方法的决策技术。
    • 第二部分:路径规划(Path Planning):图搜索算法(A\*, Hybrid A\*等)、采样算法(RRT, RRT\*等)、曲线生成方法。
    • 第三部分:运动控制(Motion Control):PID、Pure Pursuit、Stanley、LQR、MPC等横纵向控制技术。
    • 第四部分:学习驱动的规划与控制(Learning-based PnC):模仿学习、深度强化学习在PnC中的应用。
    • 第五部分:端到端与集成式框架(E2E & Integrated Frameworks):新兴的系统架构探讨。
    • 第六部分:实战项目案例(Practical Projects):基于仿真环境的PnC系统原型搭建与调试。
    • 第七部分:总结与展望(Conclusion & Outlook):技术回顾与未来展望。
  • 建议学习路径
    1. 打好基础:确保具备必要的数学和编程基础(详见0.9节)。
    2. 循序渐进:按照课程章节顺序学习,先理解宏观概念和传统方法,再逐步深入到复杂算法和前沿技术。
    3. 理论与实践结合:每学习一种算法或技术,不仅要理解其理论,还要尝试思考其实现细节,并积极参与课程提供的代码实践和项目案例。
    4. 勤于思考与总结:主动思考不同算法间的联系与区别,总结各类方法的优劣和适用场景。
    5. 广泛阅读与交流:除了课程内容,鼓励阅读相关论文、技术博客,参与学术和技术社区的讨论。

0.9 预备知识与学习环境建议

为确保最佳学习效果,建议学员具备以下基础知识和软硬件条件:

  • 编程基础
    • 熟练掌握至少一种主流编程语言,Python 是本课程主要的实践语言,因其在AI和机器人领域广泛应用且易于上手。
    • 对 C++ 有一定了解者更佳,因为许多高性能的自动驾驶系统(如Apollo, Autoware)底层采用C++实现。
    • 熟悉基本的数据结构与算法。
  • 数学基础
    • 线性代数:向量、矩阵运算、特征值/特征向量等,是理解状态空间模型、坐标变换、优化算法的基础。
    • 微积分:导数、偏导数、梯度、积分等,是理解运动学、动力学、优化过程的关键。
    • 概率论与数理统计:概率分布、期望、方差、贝叶斯定理等,是理解不确定性建模、感知融合、机器学习算法的基础。
  • 理论基础(有基本了解即可,课程中会涉及):
    • 控制理论:经典控制(PID)、现代控制(状态空间、LQR、MPC)的基本概念。
    • 机器人学:坐标变换、运动学、动力学、路径规划基础。
    • 机器学习:监督学习、无监督学习、强化学习的基本概念。
  • 推荐工具/环境
    • 编程环境:推荐使用 PyCharm Community Edition 或 VS Code 作为Python集成开发环境(IDE)。
    • 仿真平台
      • CARLA Simulator (CARLA官网): 开源的自动驾驶仿真器,提供逼真的城市场景、传感器模型和车辆动力学,支持Python和C++ API。
      • Udacity Self-Driving Car Simulator (Udacity GitHub): 轻量级仿真器,适合初学者进行路径规划和控制算法的练习。
      • 其他可选:SUMO (交通流仿真), LGSVL Simulator (已被收购和整合,原Forteian维护), Baidu Apollo (Apollo官网) 和 Autoware (Autoware官网) 均包含各自的仿真环境或与第三方仿真器集成。
    • 常用Python库:NumPy (数值计算), SciPy (科学计算), Matplotlib (绘图), OpenCV (图像处理), PyTorch/TensorFlow (深度学习框架,在学习驱动章节会用到)。
    • 版本控制:Git,用于代码管理和协作。建议注册GitHub账户。
    • 操作系统:课程示例主要基于Linux (Ubuntu) 或 macOS,Windows用户可能需要通过WSL (Windows Subsystem for Linux) 或虚拟机来获得更好的兼容性,尤其是在使用ROS或某些特定仿真工具时。

具备上述基础将有助于学员更顺畅地跟进课程内容,并从实践环节中获得更大收益。对于部分有所欠缺的知识点,学员可以在学习过程中针对性地进行补充。

课程导论核心回顾
  • PnC的战略意义:自动驾驶的“大脑”,决定安全、舒适与效率,是减少交通事故的关键技术。
  • PnC的核心构成:行为决策(做什么)、路径/运动规划(怎么走)、运动控制(如何精确执行)三位一体,协同工作。
  • PnC的严峻挑战:动态环境、感知不确定性、地图依赖、实时性、功能安全、算法泛化等。
  • PnC的技术版图:涵盖基于规则、搜索/采样、优化、机器学习等多种算法流派,以及模块化、端到端、集成式等不同系统框架。
  • PnC的前沿趋势:数据与模型融合、世界模型、可解释AI、V2X协同、大规模仿真、攻克长尾问题。
  • 学习本课程:要求一定的编程和数学基础,目标是系统掌握理论并培养实战能力,为投身自动驾驶研发打下坚实基础。
自动驾驶中的规控算法(规划控制算法)是实现车辆自主驾驶的核心部分,它负责从环境感知到决策执行的整个过程。规控算法通常分为两个主要部分:**规划(Planning)** 和 **控制(Control)**。 ### 规划(Planning) 规划模块的主要任务是根据感知系统提供的信息,生成一条安全、高效且符合交通规则的行驶路径。规划可以进一步细分为以下几个子模块: - **路径规划(Path Planning)** 路径规划的目标是从起点到终点找到一条最优或次优的路径,通常基于地图信息和障碍物位置进行计算。常见的算法包括A*、Dijkstra、RRT(快速随机树)、RRT*等。这些算法在静态环境中表现良好,但在动态环境中需要结合预测模块的信息进行调整 [^3]。 - **行为决策(Behavior Decision Making)** 行为决策模块负责决定车辆的行为,例如换道、超车、停车、让行等。该模块通常使用状态机(State Machine)或基于规则的系统来建模不同的驾驶行为,并根据当前环境状态选择合适的行为 [^1]。 - **轨迹规划(Trajectory Planning)** 在确定了路径和行为之后,轨迹规划模块会生成一条满足动力学约束的平滑轨迹。轨迹规划不仅要考虑路径的安全性,还要考虑乘客的舒适性和车辆的运动能力。常用的方法包括多项式插值、样条曲线拟合以及基于优化的方法 [^2]。 ### 控制(Control) 控制模块的任务是将规划生成的轨迹转化为具体的车辆控制指令(如油门、刹车、方向盘转角),以确保车辆能够准确地沿着期望轨迹行驶。常用的控制算法包括: - **PID控制(Proportional-Integral-Derivative Control)** PID控制器是一种经典的反馈控制方法,广泛应用于纵向(速度控制)和横向(方向控制控制中。其优点是结构简单、易于实现,但对复杂非线性系统的适应能力较弱 [^2]。 ```python # 示例:简单的PID控制器实现 class PIDController: def __init__(self, Kp, Ki, Kd): self.Kp = Kp self.Ki = Ki self.Kd = Kd self.last_error = 0 self.integral = 0 def update(self, error, dt): self.integral += error * dt derivative = (error - self.last_error) / dt output = self.Kp * error + self.Ki * self.integral + self.Kd * derivative self.last_error = error return output ``` - **LQR控制(Linear Quadratic Regulator)** LQR是一种基于状态空间模型的最优控制方法,适用于线性系统。它通过最小化一个代价函数来求解最优控制律,常用于横向控制中 [^2]。 - **MPC控制(Model Predictive Control)** MPC是一种先进的控制策略,能够在每个控制周期内基于车辆动力学模型对未来一段时间内的状态进行预测,并求解出最优控制序列。由于其良好的处理多变量约束的能力,MPC在自动驾驶中被广泛应用 [^2]。 ### 应用场景 自动驾驶规控算法的应用场景非常广泛,主要包括以下几个方面: - **高速公路自动驾驶** 在高速公路上,车辆行驶相对规则,规控算法主要关注车道保持、变道超车、跟车巡航等功能。此时可以采用较为简化的模型进行处理 [^1]。 - **城市道路自动驾驶** 城市道路环境更为复杂,涉及行人、自行车、红绿灯等多种因素。规控算法需要具备更强的实时性和鲁棒性,能够处理突发情况并做出合理决策 [^1]。 - **泊车辅助自动泊车** 自动泊车系统需要精确控制车辆的低速运动,规控算法需结合路径规划控制技术,确保车辆能够安全、平稳地完成泊车动作 [^2]。 - **越野特殊地形导航** 在非结构化道路上,如沙地、雪地或山地,规控算法需要考虑车辆的动力学特性地面摩擦力等因素,通常需要更复杂的模型优化方法 [^3]。 ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值