基于旗鱼算法优化长短期记忆网络LSTM的风电场发电功率预测

基于旗鱼算法优化长短期记忆网络LSTM的风电场发电功率预测

1.LSTM原理

LSTM 模型主要引入了"门"的机制,其中包含三个门:遗忘门、输入门和输出门。通过这些门的组合,LSTM 能 够在序列中有效地存储和检索信息,从而更好地捕捉长期依赖关系。其结构如图 1 所示。

在这里插入图片描述

图 1 LSTM 模型的网络结构

当前状态与上一时刻状态关系为

f t = σ ( W f ∙ [ h t − 1 , x t ] + b f ) i t = σ ( W i ∙ [ h t − 1 , x t ] + b i ) C ~ t = tanh ⁡ ( W c ∙ [ h t − 1 , x t ] + b c ) o t = σ ( W o ∙ [ h t − 1 , x t ] + b o ) \begin{aligned} & f_t=\sigma\left(W_f \bullet\left[h_{t-1}, x_t\right]+b_f\right) \\ & i_t=\sigma\left(W_i \bullet\left[h_{t-1}, x_t\right]+b_i\right) \\ & \tilde{C}_t=\tanh \left(W_c \bullet\left[h_{t-1}, x_t\right]+b_c\right) \\ & o_t=\sigma\left(W_o \bullet\left[h_{t-1}, x_t\right]+b_o\right) \end{aligned} ft=σ(Wf[ht1,xt]+bf)it=σ(Wi[ht1,xt]+bi)C~t=tanh(Wc[ht1,xt]+bc)ot=σ(Wo[ht1,xt]+bo)

式中: σ \sigma σ 为 sigmod 激活函数; tanh ⁡ \tanh tanh 为双曲正切激活函数; h t − 1 h_{t-1} ht1 t − 1 \mathrm{t}-1 t1 时刻的输出; f t ,   i t ,   C ~ t ,   o t f_t, ~ i_t, ~ \tilde{C}_t, ~ o_t ft, it, C~t, ot 分别为 :t时刻下遗忘门限,输入门限,状态矩阵,输出门限; W f ,   W i ,   W c ,   W o W_f, ~ W_i, ~ W_c, ~ W o Wf, Wi, Wc, Wo 分别为各对应层的权重t; b f ,   b i ,   b c ,   b o b_f, ~ b_i, ~ b_c, ~ b_o bf, bi, bc, bo分别为各对应层的偏置系数。

最后,新的状态表示为

C t = f t × c t − 1 + i t × C ~ t C_t=f_t \times c_{t-1}+i_t \times \tilde{C}_t Ct=ft×ct1+it×C~t

2.风电功率预测

2.1 数据集

数据集为2019年风电功率数据,数据集如下:

时间测风塔10m风速(m/s)测风塔30m风速(m/s)测风塔50m风速(m/s)测风塔70m风速(m/s)轮毂高度风速(m/s)测风塔10m风向(°)测风塔30m风向(°)测风塔50m风向(°)测风塔70m风向(°)轮毂高度风向(°)温度(°)气压(hPa)湿度(%)实际发电功率(mw)
2019-01-01 00:00:000.223000.8180.818166.816177.3556.224210.836210.836-13.154898.7153.4970.979591

数据特征除时间意外,一共包含14维特征

我们利用Windowsize = 5天的数据预测下一天的数据, 于是5天的数据一共包含14*5=70维度,预测输出1维数据,即实际发电功率(mw)。实际应用中,Windowsize的大小可根据实际情况进行修改。

3.基于旗鱼算法优化的LSTM

旗鱼算法原理请参考:https://blog.csdn.net/u011835903/article/details/109256699
由前文可知,LSTM的参数设置具有满目性。本文利用旗鱼算法对LSTM的参数(学习率,LSTM神经元个数,正则化参数)进行优化。适应度函数设计为训练集的MAPE平均百分比误差:
f i t n e s s = a r g m i n ( M A P E p r i d e c t ) fitness = argmin(MAPE{pridect}) fitness=argmin(MAPEpridect)

适应度函数选取训练后的MAPE误差。MAPE误差越小表明预测的数据与原始数据重合度越高。最终优化的输出为最佳学习率,LSTM神经元个数,正则化参数。然后利用最佳学习率,LSTM神经元个数,正则化参数训练后的网络对测试数据集进行测试。

4.实验结果

请添加图片描述
请添加图片描述
请添加图片描述
请添加图片描述
请添加图片描述
请添加图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

智能算法研学社(Jack旭)

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值