基于旗鱼算法优化长短期记忆网络LSTM的风电场发电功率预测
1.LSTM原理
LSTM 模型主要引入了"门"的机制,其中包含三个门:遗忘门、输入门和输出门。通过这些门的组合,LSTM 能 够在序列中有效地存储和检索信息,从而更好地捕捉长期依赖关系。其结构如图 1 所示。
当前状态与上一时刻状态关系为
f t = σ ( W f ∙ [ h t − 1 , x t ] + b f ) i t = σ ( W i ∙ [ h t − 1 , x t ] + b i ) C ~ t = tanh ( W c ∙ [ h t − 1 , x t ] + b c ) o t = σ ( W o ∙ [ h t − 1 , x t ] + b o ) \begin{aligned} & f_t=\sigma\left(W_f \bullet\left[h_{t-1}, x_t\right]+b_f\right) \\ & i_t=\sigma\left(W_i \bullet\left[h_{t-1}, x_t\right]+b_i\right) \\ & \tilde{C}_t=\tanh \left(W_c \bullet\left[h_{t-1}, x_t\right]+b_c\right) \\ & o_t=\sigma\left(W_o \bullet\left[h_{t-1}, x_t\right]+b_o\right) \end{aligned} ft=σ(Wf∙[ht−1,xt]+bf)it=σ(Wi∙[ht−1,xt]+bi)C~t=tanh(Wc∙[ht−1,xt]+bc)ot=σ(Wo∙[ht−1,xt]+bo)
式中: σ \sigma σ 为 sigmod 激活函数; tanh \tanh tanh 为双曲正切激活函数; h t − 1 h_{t-1} ht−1 为 t − 1 \mathrm{t}-1 t−1 时刻的输出; f t , i t , C ~ t , o t f_t, ~ i_t, ~ \tilde{C}_t, ~ o_t ft, it, C~t, ot 分别为 :t时刻下遗忘门限,输入门限,状态矩阵,输出门限; W f , W i , W c , W o W_f, ~ W_i, ~ W_c, ~ W o Wf, Wi, Wc, Wo 分别为各对应层的权重t; b f , b i , b c , b o b_f, ~ b_i, ~ b_c, ~ b_o bf, bi, bc, bo分别为各对应层的偏置系数。
最后,新的状态表示为
C t = f t × c t − 1 + i t × C ~ t C_t=f_t \times c_{t-1}+i_t \times \tilde{C}_t Ct=ft×ct−1+it×C~t
2.风电功率预测
2.1 数据集
数据集为2019年风电功率数据,数据集如下:
时间 | 测风塔10m风速(m/s) | 测风塔30m风速(m/s) | 测风塔50m风速(m/s) | 测风塔70m风速(m/s) | 轮毂高度风速(m/s) | 测风塔10m风向(°) | 测风塔30m风向(°) | 测风塔50m风向(°) | 测风塔70m风向(°) | 轮毂高度风向(°) | 温度(°) | 气压(hPa) | 湿度(%) | 实际发电功率(mw) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2019-01-01 00:00:00 | 0.223 | 0 | 0 | 0.818 | 0.818 | 166.816 | 177.355 | 6.224 | 210.836 | 210.836 | -13.154 | 898.71 | 53.497 | 0.979591 |
数据特征除时间意外,一共包含14维特征
我们利用Windowsize = 5天的数据预测下一天的数据, 于是5天的数据一共包含14*5=70维度,预测输出1维数据,即实际发电功率(mw)。实际应用中,Windowsize的大小可根据实际情况进行修改。
3.基于旗鱼算法优化的LSTM
旗鱼算法原理请参考:https://blog.csdn.net/u011835903/article/details/109256699
由前文可知,LSTM的参数设置具有满目性。本文利用旗鱼算法对LSTM的参数(学习率,LSTM神经元个数,正则化参数)进行优化。适应度函数设计为训练集的MAPE平均百分比误差:
f
i
t
n
e
s
s
=
a
r
g
m
i
n
(
M
A
P
E
p
r
i
d
e
c
t
)
fitness = argmin(MAPE{pridect})
fitness=argmin(MAPEpridect)
适应度函数选取训练后的MAPE误差。MAPE误差越小表明预测的数据与原始数据重合度越高。最终优化的输出为最佳学习率,LSTM神经元个数,正则化参数。然后利用最佳学习率,LSTM神经元个数,正则化参数训练后的网络对测试数据集进行测试。
4.实验结果