HDU 1565 方格取数 题解

【题目】:

Problem Description
给你一个n*n的格子的棋盘,每个格子里面有一个非负数。
从中取出若干个数,使得任意的两个数所在的格子没有公共边,就是说所取的数所在的2个格子不能相邻,并且取出的数的和最大。
 

Input
包括多个测试实例,每个测试实例包括一个整数n 和n*n个非负数(n<=20)
 

Output
对于每个测试实例,输出可能取得的最大的和
 

Sample Input
3 75 15 21 75 15 28 34 70 5
 

Sample Output
188

【分析】:

这个问题的模型就是求二分图点权最大独立集(二分图点权最大独立集即:选出图中一些点,使得这些点之间没有边相连,且这些点的权值之和最大)。对于这种问题,我们可以将其转化为最小割模型,从而用最大流算法解决。(结论:最大点权独立集 = 所有点权 - 最小点权覆盖 = 所有点权 - 最小割 = 所有点权 - 最大流)简单割集为未割容量为无穷的边的割边集,且可证,最小割一定是简单割,又求最小简单割的建模方法就是把XY集合之间的边的容量设为无穷大,而二分图中,最小点权覆盖值就是最小简单割。这样一来,基本构图就出来了:

首先我们把棋盘黑白染色,目的是让相邻的格子的定义颜色(黑和白)不同,我们将所有的黑色格子看做二分图X集合中的顶点,白色格子看做Y集合顶点,并建立源点S和汇点T。

建图规则如下:
1、从S向X集合中每个顶点连接一条容量为格子权值的有向边。
2、从Y集合中每个顶点向T连接一条容量为格子权值的有向边。
3、相邻格子Xi,Yj之间从Xi向Yj连接一条容量为无穷大的有向边。(代码实现时注意,此处不要连成了双向边)
最后,我们求出该图的最大流,那么所要求的结果就是所有格子中数值总和减去最大流。

有关二分图最大点权独立集的问题,请见《最小割模型在信息学竞赛中的应用》。

【代码】:

#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<iostream>
#include<algorithm>
using namespace std;
#define MAXNODE 403
#define MAXE 4003
#define IMAX 214748364
struct EDGE{int f,t,next,flow;}a[MAXE];
int N,tot,last[MAXNODE],ans,total,S,T;
int d[MAXNODE],Q[MAXE]; 
const int dx[4]={0,1,0,-1};
const int dy[4]={1,0,-1,0};
void add(int from,int to,int flow)
{
	a[tot].t=to;
	a[tot].flow=flow;
	a[tot].next=last[from];
	last[from]=tot++;
	a[tot].t=from;
	a[tot].flow=0;
	a[tot].next=last[to];
	last[to]=tot++;	
}
bool build()
{
	int right=0;
	for(int i=S;i<=T;i++)
	      d[i]=IMAX;
	d[S]=0;
	Q[++right]=S;
	for(int left=1;left<=right;left++)
	{
		  int now=Q[left];
		  for(int i=last[now];i!=-1;i=a[i].next)
		  {
		  	    int to=a[i].t;
		  	    if(a[i].flow && d[now]+1<d[to])
		  	    {
		  	    	  d[to]=d[now]+1;
		  	    	  if(to==T)   return true;
		  	    	  Q[++right]=to;
				}
		  }
	}
	return false;
}
int DINIC(int now,int flow)
{
	if(!flow)   return 0;
	if(now==T)  return flow;
	int rem=flow,use;
	for(int i=last[now];i!=-1;i=a[i].next)
	{
		  int to=a[i].t;
		  if(d[to]==d[now]+1 && (use=DINIC(to,min(flow,a[i].flow))))
		  {
		  	     a[i].flow-=use;
		  	     a[i^1].flow+=use;
		  	     flow-=use;
		  }
	}
	if(rem==flow)   d[now]=-1;
	return rem-flow;
}
void MaxFlow()
{
	int use;
	while(build())
	{
		  while(use=DINIC(S,IMAX))
		        ans+=use;
	}
}
int main()
{
#ifndef ONLINE_JUDGE 
      freopen("input.txt","r",stdin); 
      freopen("output.txt","w",stdout); 
#endif 
	while(scanf("%d",&N)!=EOF)
	{
		  S=0;T=N*N+1;tot=0;ans=0;total=0;
		  memset(last,-1,sizeof(last));
		  for(int i=1;i<=N;i++)
		        for(int j=1;j<=N;j++)
		        {
		        	  int value;
		        	  scanf("%d",&value);
		        	  total+=value;
					  if((i+j)&1)
					  {
					  		add(S,(i-1)*N+j,value);
							for(int k=0;k<4;k++)
								  if(1<=i+dx[k] && i+dx[k]<=N && 1<=j+dy[k] && j+dy[k]<=N)
					        	  {
					        	  		int nx=i+dx[k],ny=j+dy[k];
					        	  		add((i-1)*N+j,(nx-1)*N+ny,IMAX);
								  }
		              }
					  else  add((i-1)*N+j,T,value);
				}
		  MaxFlow();
		  printf("%d\n",total-ans);
	}
	return 0;
}


### HDU1565 方格 动态规划 解题思路 对于给定的一个 \( n \times n \) 的棋盘,其中每个格子内含有一个负数值。目标是从这些格子里选一些,使得任何两个被选中的所在的位置没有公共边界(即它们不是上下左右相邻),并且使选出的之和尽可能大。 #### 构建状态转移方程 为了实现这一目的,可以定义二维组 `dp` 来存储到达某位置的最大累积值: - 设 `dp[i][j]` 表示当考虑到第 i 行 j 列时能够获得的最大价值。 初始化阶段,设置第一行的据作为基础情况处理;之后通过遍历整个矩阵来更新每一个可能的状态。具体来说,在计算某个特定单元 `(i, j)` 处的结果之前,应该先考察其上方以及左上角、右上角三个方向上的元素是否已经被访问过,并据此调整当前节点所能达到的最佳得分[^1]。 ```cpp for (int i = 0; i < N; ++i){ for (int j = 0; j < M; ++j){ dp[i][j] = grid[i][j]; // 上面一排的情况 if(i > 0 && !conflict(i,j,i-1,j)) dp[i][j] = max(dp[i][j], dp[i-1][j] + grid[i][j]); // 左斜线方向 if(i > 0 && j > 0 && !conflict(i,j,i-1,j-1)) dp[i][j] = max(dp[i][j], dp[i-1][j-1] + grid[i][j]); // 右斜线方向 if(i > 0 && j+1 < M && !conflict(i,j,i-1,j+1)) dp[i][j] = max(dp[i][j], dp[i-1][j+1] + grid[i][j]); } } ``` 这里需要注意的是冲突检测函 `conflict()` ,用于判断两格之间是否存在直接连接关系。如果存在,则不允许同时选择这两格内的字相加到路径之中去。 #### 寻找最优解 最终的答案将是最后一行中所有列的最大值之一,因为这代表了从起点出发直到终点结束可以获得的最大收益。可以通过简单的循环找到这个最大值并返回它作为结果输出。 ```cpp // 找到最后一行的最大值 __int64 result = 0; for(int col = 0; col < M; ++col) { result = max(result, dp[N-1][col]); } cout << "Maximum sum is: " << result << endl; ``` 上述方法利用了动态规划的思想有效地解决了该问题,时间复杂度大约为 O(n*m),空间复杂度同样决于输入规模大小。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值