计算机视觉与深度学习 | 图像特征点提取算法及匹配算法综述

图像特征点提取算法及匹配算法综述

1. 引言
  • 图像特征点提取与匹配是计算机视觉领域的核心技术,广泛应用于三维重建、机器人导航、目标跟踪、图像拼接等领域。其核心任务是通过检测图像中的关键点(如角点、边缘点等),生成具有鲁棒性的特征描述符,并在不同图像间建立准确的对应关系。本文将从算法原理、数学公式、代码实现等角度,系统综述经典与现代特征点提取与匹配算法,并探讨其发展趋势。

2. 基本原理

特征点提取与匹配包含三个核心步骤:特征点检测特征描述符生成特征点匹配

  1. 特征点检测
    通过检测图像中具有显著性的局部结构(如角点、斑块等),常用的检测方法包括基于梯度的方法(如SIFT、SURF)和基于二进制的快速方法(如FAST、ORB)。

  2. 特征描述符生成
    对检测到的特征点周围区域进行数学建模,生成具有旋转、尺度、光照不变性的描述符向量。例如,SIFT通过梯度方向直方图生成128维向量。

  3. 特征点匹配
    通过距离度量(如欧氏距离、汉明距离)或相似性度量(如余弦相似度)在不同图像中寻找对应点,常用算法包括暴力匹配、FLANN和RANSAC。


3. 常用特
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

北斗猿

代码有情,打赏有爱!谢谢!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值