正文开始之前,首先给大家介绍一下什么是dify。Dify 是一款开源的大语言模型(LLM)应用开发平台,融合了后端即服务(Backend as Service)和 LLMOps 的理念,能帮助开发者快速搭建生产级的生成式 AI 应用,非技术人员也可参与到 AI 应用的定义和数据运营中。所以,我们掌握了dify就可以自己实现一些项目功能,甚至进行部署发步成app。
dify的安装在这里给大家简单的说一下,首先需要下载doker,配置镜像等,配置完成后需要进入dify下载模型和工具来使用。另外如果想让自己的dify生成的工具功能更强大,也可以链接mysq数据库以及其他的应用。若有需要的可以评论或私信,发给大家安装教程。
那么dify可以做些什么呢,今天先给大家讲一讲简单的应用。创建 chatflow,对用户的问题记性分类,根据本地知识库进行回复。大家跟好哦!
首先大家可以根据已有的文件创建几个知识库,本文用的是,医疗方面,法律方面,经营店铺方面的数据。那么如何制作知识库,请看接下来的操作。
选择相应的文件导入完成后就会生成知识库。
这样知识库创建完毕了,本案例需要三个知识库在此不一一展示了,操作步骤是一样的,接下来我们正式开始项目:
第一步就是创建空白应用,之后在里面选择charflow,命个名然后创建就可以啦
进来之后就是这个样子,但是默认的节点可能不是我们想要的,所以我们只需要保留开始节点即可,其余的全部删掉。
第二步就是选择节点,先选择问题分类器节点
节点创建成功之后我们就需要在右边的框框里添加相应的内容,先给大家进行简单介绍:
了解完成,根据需要完成如下图效果即可:
第三步我们前三条分支都需连接知识库节点和大模型节点,创建方法和之前一样。其目的是根据用户问题在我们创建的知识库中进行检索。第四条其他,我们没有相应的知识库,就可以链接工具(如谷歌搜索或者题目中我用的这个)进行搜索给出答案。下面的图片就是创建过程。
小编要开始闪现喽,不一一举例了,操作步骤一样,只需要选择对应的知识库即可。请看下图就是我们有知识库的前三个分支的效果。
马上胜利了,我们完成第四个模块吧!
我们要先链接一个工具进行搜索,然后可以根据需要链接大模型进行格式整理再输出或者直接进行输出。我们这里就直接输出了
欧克!到这里我们就全部结束了。我们可以点击预览进行功能测试,然后发布就可以了。
大家把自己的效果截图发到评论区看看吧,我们互相讨论学习,有不足之处请指出,感谢大家