
质量效能
文章平均质量分 89
测试者家园
于涌,知名技术专家和专业图书作者。作为技术专家,曾在多家互联网企业担任技术总监岗位,积累了丰富的实战和管理经验。作为知名图书作者,创作了十余本专业著作,紧跟时代步伐,关注和探索前沿技术的落地与实践,多次获得优秀原创IT图书作者和最受欢迎的IT类图书作者等荣誉。曾为多家企业提供软件测试相关课程、敏捷开发、ChatGPT、AIGC和项目管理等内容的培训和咨询服务。致力于为企业提供实用的技术指导和应用,为读者提供深入并易于理解的知识分享,以促进企业的创新和读者的个人职业发展。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
技术转型期如何确保研发效能稳定?
,每一次转型都伴随着组织结构、技术体系、工具链乃至文化认知的剧烈震荡。如果控制不当,可能引发研发效率大幅波动、质量风险上升、人员流失、协作混乱等问题。原创 2025-08-12 00:30:00 · 906 阅读 · 0 评论 -
模型精调在企业智能测试系统中的实践
本文将系统阐述模型精调在智能测试系统中的应用价值、技术路线、数据构建、实践案例与落地建议,助力企业打造专属的测试领域大脑。原创 2025-07-23 00:45:00 · 611 阅读 · 0 评论 -
本地智能体在企业内网测试的部署方法
随着企业对测试智能化、知识资产重用、质量保障自动化的要求不断提高,基于本地大模型部署的测试智能体将成为内网场景下的新型测试基础设施。通过科学的模型部署方案、安全可控的工具链构建、灵活的智能体能力组合,企业可以真正实现从“自动化测试平台”向“智能测试伙伴”演进。原创 2025-07-21 00:45:00 · 1880 阅读 · 0 评论 -
Dify 在测试场景下的二次开发建议
随着大语言模型(LLM)在软件开发和测试领域的广泛应用,越来越多企业希望将 LLM 能力落地到实际的测试工作流中。Dify,作为一款支持低代码构建智能体(Agent)和工作流的开源 LLM 应用平台,为企业实现测试智能化提供了极具性价比和灵活性的解决方案。但 Dify 本身设计为通用 LLM 应用平台,要将其用于复杂、结构化、知识密集型的软件测试场景,还需要一定程度的“二次开发”与定制化。本篇文章将从 架构适配性、插件开发、工作流编排、知识库增强、测试工具集成、安全可控性 等维度,提供系统的 Dify原创 2025-07-19 00:45:00 · 932 阅读 · 0 评论 -
使用 FastChat 搭建企业级测试助手方案
随着软件系统的复杂性不断提升,测试人员面临更高的质量保障压力和更复杂的场景覆盖需求。传统的测试方法在效率、响应速度和智能化水平上已经难以满足现代企业敏捷开发与持续交付(CI/CD)的要求。于是,越来越多的企业开始探索如何借助大语言模型(LLM),构建具备智能理解与任务协作能力的测试助手。在这一背景下,FastChat 作为一款开源的、灵活可扩展的大语言模型对话框架,凭借其强大的并发处理能力、模型支持范围广、企业部署友好等特点,成为构建企业级测试助手的理想基础设施。原创 2025-07-18 00:45:00 · 952 阅读 · 0 评论 -
最怕老板说:“我看你很闲啊。”
在职场中,尤其是软件开发与测试领域,程序员们常常会面临各种压力和挑战。其中,有一句话让无数技术人员感到忐忑和尴尬,那便是——“我看你很闲啊。”这句话表面看似无害,实则折射出管理者对员工工作状态的误解与焦虑,也反映了组织内部信息不对称和沟通不足的典型问题。本文将剖析“我看你很闲啊”背后的多重含义,从管理、技术、心理和团队文化等层面探讨这一现象的成因及其影响,提出建设性的应对思路,以期帮助职场人士和管理者建立更合理的工作认知和更高效的协作氛围。原创 2025-06-17 01:00:00 · 585 阅读 · 0 评论 -
上线的代码和计划的功能,像俩平行世界
在软件开发领域,产品经理、开发团队和测试团队的共同目标,是将计划中的功能准确、高质量地交付给用户。然而,现实却往往呈现出截然不同的景象:上线运行的代码与最初设计的功能需求,仿佛处于两个互不交集的平行世界。功能需求清晰明了,方案设计详尽完备,但实际上线的系统却因各种原因与预期出现差距,导致用户体验与业务目标难以达成一致。本文将探讨这一“平行世界”现象的本质原因、典型表现以及应对之策,旨在帮助从业者正视这一行业难题,从流程、技术和团队协作等多维度寻找突破口,推动软件交付走向真正的“计划-实现”闭环。原创 2025-06-16 00:45:00 · 1246 阅读 · 0 评论 -
从DevOps到AIOps:智能体如何接管持续交付流程
本文将从 DevOps 的演进逻辑出发,深入探讨智能体在持续交付流程中的角色与变革性价值,并分析 AIOps 在真实工程环境中的落地路径与挑战。原创 2025-06-10 01:00:00 · 2226 阅读 · 0 评论 -
工作流 + 智能体:开启软件自动化协作新时代
过去十年,软件工程经历了从瀑布模型到敏捷开发,再到 DevOps 的深刻变革。在 DevOps 时代,自动化工具链极大地提升了软件交付的效率,构建、测试、部署、监控等流程实现了流水线式集成,自动化成为软件交付的标配。然而,这种自动化本质上仍是人类设定规则、程序执行动作的“被动”流程,其适应性和智能性极为有限。当今时代,AI智能体(Agent) 和 工作流(Workflow) 技术的快速融合,正在重新定义软件工程的协作模式。原创 2025-06-09 00:15:00 · 1183 阅读 · 0 评论 -
安全测试基础:如何识别Web常见漏洞
在数字化浪潮推动下,Web应用成为连接用户与服务的核心门户。然而,正因其开放性和复杂性,Web应用长期以来也成为攻击者重点瞄准的目标。安全漏洞不仅威胁数据安全,更可能造成品牌声誉和业务连续性的严重损失。作为安全测试专家,我们必须具备系统且深入的Web漏洞识别能力,从根源筑牢安全防线。本文将系统解析Web应用中最常见漏洞类型、识别方法和实战技巧,帮助读者全面提升安全测试的深度与广度。原创 2025-06-04 01:00:00 · 758 阅读 · 0 评论 -
团队配合不如意,比写 bug 还让人头疼
一个后端接口多返回了一个字段,前端页面就出错,这是 bug;一个测试遗漏了场景导致线上宕机,这是 bug;一个逻辑分支没有处理异常,这是 bug。这些都能通过日志、工具、测试或代码 review 找到、重现、修复。但以下这些,却无从调试: 前后端接口协议反复修改但没人同步更新; 测试用例设计不全,却认为开发“理应懂”; DevOps 人员不理解上线风险,临时硬部署; 成员对问题视而不见,不愿负责,只说“不是我负责的部分”。这些不是代码问题,而是协作失灵。原创 2025-06-04 00:15:00 · 1405 阅读 · 0 评论 -
持续反馈机制设计与实现
在传统软件开发中,反馈往往意味着“测试结果的回传”或“用户的抱怨邮件”。但在云原生、DevOps 和 AI 驱动的软件工程新时代,反馈不再是附属流程,而是成为软件系统持续进化的核心驱动器。持续反馈机制(Continuous Feedback System)的真正价值,不在于“是否收到了反馈”,而在于反馈的速度、质量、触达范围以及其对行为的反作用力。它应当成为软件系统的“神经网络”与“免疫系统”,实现对业务、技术与用户三维视角的感知、响应与调优。原创 2025-06-03 02:45:00 · 882 阅读 · 0 评论 -
有一种“沉默的爆炸”,叫团队成员都不说话
在软件项目管理与团队协作中,有一种最致命的信号,不是冲突、不是加班、也不是抱怨,而是——集体沉默。它像一颗无声的定时炸弹,平静时看似风平浪静,爆发时却能将整个项目击穿。它代表着信任的缺失、责任的模糊和团队机制的崩塌。“都不说话”,不是冷静,是危险。本文将深入解析“沉默的爆炸”背后的机制、成因及破局之道,为每一个技术团队、项目管理者和组织领导者敲响警钟。原创 2025-06-02 01:15:00 · 822 阅读 · 0 评论 -
为什么AG-UI将深刻改变软件测试
AG-UI(Agent-Guided User Interface)正在革新软件测试领域,通过智能代理驱动用户界面,实现更智能化的测试流程。AG-UI的核心特征包括语义化驱动、交互上下文感知、内建操作接口和嵌入式数据反馈机制,使得测试从传统的脚本驱动转变为目标驱动,大大降低了测试的复杂性和维护成本。此外,AG-UI能够自动生成全链路测试,实现智能探索式测试,并提供可解释性和可视化的测试分析。这种变革不仅改变了测试的执行方式,也重新定义了测试人员的角色,使其从脚本维护者转变为测试目标设计者和数据分析者。AG-原创 2025-05-17 04:52:31 · 748 阅读 · 0 评论 -
A2A 正在彻底颠覆我们对软件测试的认知与实践方式
软件测试行业正经历一次深刻的转型,传统的自动化测试在面对敏捷开发、系统复杂性和资源限制时显得力不从心。AI技术的引入,特别是A2A(Agent-to-Agent)架构,正在彻底改变测试的实践和思维模式。A2A通过多个自治智能体的协作,实现了从静态、单向的测试流程向动态、协同的智能网络的转变。这种架构不仅提高了测试的效率和适应性,还使测试系统具备了环境感知和策略自调优的能力,从而从单纯的执行者转变为质量洞察者。A2A的引入依赖于自然语言理解、多智能体系统、任务链与工作流等关键技术的成熟,它将重新定义测试工程师原创 2025-05-15 08:02:34 · 979 阅读 · 0 评论 -
将历史流量转化为可维护的自动化测试资产
在传统测试理念中,“测试设计”总是优先,而“测试数据”不过是填空题。但在AI时代,数据就是起点,尤其是沉淀在系统中的历史流量,堪比测试界的“原油”。将历史流量转化为自动化、可维护、可演进的测试资产,不仅让测试变得更加真实、高效、可持续,也让企业在面对复杂系统与快速变化需求时,拥有了不断自我适应的测试能力。这不只是测试方式的革新,更是测试价值体系的重构。未来已来,只等你我拥抱它。原创 2025-05-16 00:30:00 · 1641 阅读 · 0 评论 -
从日志到流量再到测试:AI如何驱动全链路质量保障?
在软件工程快速迭代的背景下,传统质量保障手段面临测试滞后、覆盖不足和问题复现困难等挑战。为解决这些问题,文章提出通过AI大模型、智能日志分析和流量建模技术,构建全生命周期、全链路、智能化的质量保障体系。具体方法包括利用AI解析系统日志,挖掘用户行为模式,自动生成测试用例和脚本;通过流量分析还原用户行为,生成高覆盖率测试;并最终实现从被动检测到主动预测,再到自愈闭环的智能质量保障模型。文章还推荐了技术栈和集成实践,强调AI在测试中的解放和加速作用,预示着数据驱动、行为洞察、智能生成和持续自适应的质量保障新范式原创 2025-05-15 00:30:00 · 1095 阅读 · 0 评论 -
大模型时代,测试团队如何重新分工?
在过去的几十年里,软件测试团队的分工体系已趋于成熟——从需求分析、测试设计、用例执行、缺陷管理到质量评估,逐步细化出测试开发、功能测试、自动化测试、性能测试、安全测试、测试管理等多角色协同模式。然而,大语言模型(LLM, Large Language Models)的崛起正在颠覆这一切。模型可以生成测试用例、编写自动化脚本、分析缺陷趋势,甚至自动生成多角色测试报告。这一变革不仅是工具层面的升级,更是测试工作范式与角色协作逻辑的重塑。原创 2025-05-13 00:15:00 · 812 阅读 · 0 评论 -
学不会编程也能写测试?AI让测试更平权
在传统的软件开发体系中,测试常被划分为“技术型测试”(如自动化、性能、安全)和“业务型测试”(如功能验证、用户体验)。前者掌握技术话语权,后者则更多依赖经验和流程规范。然而,随着大语言模型(LLM)等AI技术的迅猛发展,这一固有格局正被悄然打破: AI 让不会编程的人也能设计、生成、执行高质量的测试,打破技术壁垒,推动测试的“平权化”进程。本文将探讨AI如何重塑软件测试生态,让“非技术背景”的测试人员在质量保障体系中获得新的力量与尊重。原创 2025-05-12 02:15:00 · 2224 阅读 · 0 评论 -
智能流量回放:用AI提升测试场景还原精度
在传统的流量回放方法基础上,AI的引入不仅仅是提升了回放精度,更是改变了测试的本质。从自动化到智能化,AI使得流量回放变得更加动态、灵活与精准。随着AI技术的不断发展,未来的流量回放将更加高效、个性化,并且能够实现跨环境、跨平台的无缝对接。原创 2025-05-12 00:15:00 · 804 阅读 · 0 评论 -
用大模型提取需求文档的关键测试点
近年来,大语言模型(LLM)的快速发展,为这一问题的解决提供了新的视角与技术手段。通过自然语言处理(NLP)技术,AI可以从需求文档中自动提取出关键的测试点,极大地提高了测试工作的效率和准确性。那么,如何利用大模型来提取需求文档中的关键测试点?它背后有哪些技术挑战和潜力?本文将从AI技术的角度,深入探讨这个问题。原创 2025-05-11 01:15:00 · 978 阅读 · 0 评论 -
从需求到用例的AI路径:准确率与挑战
从需求到用例”的AI路径,并非只是提高效率的捷径,它背后承载的是一个关于需求理解、认知建模与质量控制的智能革命。准确率的提升,不仅依赖模型的强大能力,更需要我们对测试知识、业务逻辑与AI协作边界的深入探索。大模型不是测试工程师的替代者,而是智力倍增器。谁能掌握AI的“语言”,谁就能引领下一代测试方法论的变革。原创 2025-05-11 00:15:00 · 1139 阅读 · 0 评论 -
如何借助AI模拟复杂业务流程数据?
我们如何借助AI技术,智能、灵活地模拟复杂业务流程数据,为测试与系统验证赋能?原创 2025-05-10 07:16:59 · 1068 阅读 · 0 评论 -
如何用AI识别代码中的安全漏洞?
过去,安全是“事后弥补”;现在,安全需要“左移防御”;未来,安全将在“代码生成的那一刻”就被AI守护。当AI懂得“代码的意图”与“攻击者的手段”时,它就不再是辅助工具,而是具备“安全判断力”的智能体。通过AI识别安全漏洞,不仅提高效率,更让安全成为开发文化的一部分。代码即契约,AI即护法。原创 2025-05-10 00:15:00 · 719 阅读 · 0 评论 -
AI能自动写出重现步骤吗?
一份好的重现步骤,是一份最宝贵的修复线索。“让 AI 写重现步骤,其实是在还原用户与系统的交互历史,挖掘背后的因果逻辑。当 AI 能够看懂用户的操作、理解系统的反应、复盘问题的触发过程,它不仅能写出重现步骤,更有望成为下一代缺陷管理与自动化测试的中枢引擎。Bug 不再是凭记忆还原的“黑匣子”,而是由 AI 还原的“交互轨迹”;测试不再只是发现问题,更是智能协同修复的起点。原创 2025-05-09 02:00:00 · 936 阅读 · 0 评论 -
跨浏览器自动化测试的智能生成方法
从最初的“为每个浏览器写一次脚本”,到今天AI驱动“一稿多测、智能适配”的模式,跨浏览器自动化测试正经历一场质变。AI不仅是测试脚本的“写作者”,更是测试设计的“理解者”、执行的“协调者”与维护的“修复者”。跨浏览器的未来,不再是重复的劳动,而是AI赋能下的智慧协作。原创 2025-05-09 00:15:00 · 1296 阅读 · 0 评论 -
脚本失败定位:AI如何实现断点恢复?
AI驱动的断点恢复机制,标志着自动化测试从“刚性线性流程”迈向“智能弹性系统”的飞跃。测试的未来,不仅要“能测准”,更要“测不垮”。当AI不仅帮助我们写测试、跑测试,还能在失败中爬起、在中断中重生,软件测试才真正具备了自愈、弹性与韧性。原创 2025-05-08 03:00:00 · 859 阅读 · 0 评论 -
自动化脚本写作速度提升5倍的秘密
未来的测试工程师,不是写脚本的人,而是教AI如何写好脚本的人。“5倍提速”只是开始,更大的革命,是AI与人类在测试过程中的认知协作。原创 2025-05-08 02:00:00 · 874 阅读 · 0 评论 -
从MLOps到TestOps:测试流程的智能化演进
融合DevOps、AI与数据工程理念,构建支持测试自动化、智能化、可观测化、可反馈闭环的测试系统。TestOps不仅仅是测试工具的组合,更是测试流程智能化的系统性重构。特性传统测试流程TestOps 理念用例生成人工设计基于LLM或规则自动生成脚本管理脚本文件手工维护脚本即服务(Test-as-Code),支持版本管理执行调度CI系统定时触发智能调度,根据风险模型或变更敏感度优先测试数据准备静态数据或Mock动态构造 + 数据生成模型结果分析人工判读测试日志。原创 2025-05-07 04:55:11 · 884 阅读 · 0 评论 -
LLM + 自动化测试是否能形成闭环?
自动化测试已成为现代软件开发体系中不可或缺的一环。从Selenium驱动的UI自动化,到Jenkins驱动的CI/CD集成测试,测试流程正在不断标准化、模块化。但现实中,自动化测试的效率仍受制于需求理解、用例设计、数据构造、脚本编写、结果分析等环节的人力依赖,难以形成真正的闭环体系。大语言模型(LLM, Large Language Models)的出现,如GPT-4、文心一言、通义千问等,带来了新的可能性。它们在自然语言理解、代码生成、知识推理等方面表现出前所未有的能力。原创 2025-05-07 04:51:22 · 841 阅读 · 0 评论 -
AI在接口测试中的应用:开启智能化测试新时代
AI在接口测试中的应用,不是对人类测试工程师的替代,而是能力的增强与边界的拓展。它使测试工作从“重复劳动”转向“策略设计”,从“规则执行”走向“智能判断”。未来的测试工程师,既是技术专家,更是智能工具的训练师与合作者。当我们以AI为桨,接口测试之舟才能驶向效率、智能与质量的彼岸。让我们拥抱这一变革,把握技术红利,为智能化测试构筑坚实基石。原创 2025-05-07 04:46:52 · 1135 阅读 · 0 评论 -
AI在接口测试中的应用
AI在接口测试中的应用,正为软件开发和测试领域带来前所未有的变革。通过自动化生成测试用例、智能化数据生成与变异、性能负载模拟以及安全性检测,AI能够极大地提高接口测试的效率、精准度和覆盖率。同时,AI的缺陷预测与定位能力,也为开发人员和测试人员提供了强有力的支持,帮助他们在复杂的项目中及时发现并解决问题。然而,AI技术的应用也需要与传统的测试方法相结合,通过人工智能与人工测试的协同作业,才能达到最佳效果。原创 2025-05-06 02:15:00 · 1608 阅读 · 0 评论 -
Schemathesis在接口测试中的高级用法
Schemathesis作为一个功能强大的自动化API测试工具,凭借其智能化的测试用例生成、全面的覆盖范围和灵活的配置选项,已经成为接口测试领域的佼佼者。通过深入挖掘Schemathesis的高级功能,我们能够在更复杂的测试场景中充分发挥其优势,提升API测试的质量、效率和全面性。无论是智能化的输入变异、性能负载测试,还是与CI/CD的深度集成,Schemathesis都能为开发团队提供更为高效、精确且灵活的测试方案。原创 2025-05-06 02:00:00 · 1022 阅读 · 0 评论 -
Schemathesis在接口测试中的应用
Schemathesis是一款基于OpenAPI(Swagger)规范的自动化测试工具。它能够通过解析API的OpenAPI描述文档(通常是JSON或YAML格式),自动生成测试用例,并验证接口的各项行为是否符合预期。Schemathesis不仅能够检查API接口的常规行为,还能自动识别潜在的边界情况、错误响应和安全漏洞,从而有效提升测试覆盖率和测试效率。Schemathesis作为一款基于OpenAPI规范的接口测试工具,不仅极大地简化了API接口测试的流程,还提高了测试覆盖率、效率和准确性。原创 2025-05-06 01:00:00 · 769 阅读 · 0 评论 -
Dify + 本地大模型:测试自动化新解法
测试自动化的核心使命不只是“写更多脚本”,而是实现软件质量保障的智能化跃迁。在这一过程中,Dify 平台的灵活能力 + 本地大模型的智能推理,正构建出一套前所未有的解法体系,推动测试从“工具时代”走向“智能体时代”。对于企业而言,这不仅是效率的提升,更是构建未来测试竞争力的关键窗口期。越早拥抱,越早受益。原创 2025-05-05 01:30:00 · 1395 阅读 · 0 评论 -
Schema 校验工具--进行格式与约束过滤
Schema 校验器,本质上是一种结构化验证引擎定义数据结构:如字段类型、可选项、嵌套结构等;设定约束条件:如最小/最大值、长度限制、正则表达式匹配、字段依赖等;自动校验输入/输出:当数据流动进入系统或生成时,先过 Schema 再入系统。其作用堪比一座“关卡”,凡是不符合规则的数据,不得通行。Schema 校验器特别适用于以下典型场景:🧪 测试数据生成 → 确保合成数据合法;🌐 API 开发 → 自动校验前后端交互参数;🤖 大模型输出 → 验证结构/语义是否偏离预期;原创 2025-05-04 02:00:00 · 1628 阅读 · 0 评论 -
用大模型生成高质量测试数据,真的靠谱吗?
在过去,我们靠人工脚本一行行“造数”;今天,我们有了大模型,能“理解业务、构建数据、识别边界、适应变更”。虽然它不是万能的,但却是目前最具潜力的数据生成技术突破口之一。不试大模型,你永远不知道你的测试数据可以有多聪明。未来的测试,不再靠“写”,而是靠“生成+验证+演化”。你准备好拥抱这个范式转变了吗?原创 2025-05-04 01:00:00 · 1389 阅读 · 0 评论 -
AI时代,测试工作的边界在哪里?
边界模糊”并不意味着测试消亡,而是其使命和价值的拓展与升维。测试正从一项“验证性工作”跃迁为一项“系统性能力”,成为支撑企业智能化转型、保障AI可信使用的核心力量。边界之外,是测试人的新舞台、新能力、新价值。真正优秀的测试工作,不是“发现问题”,而是“预防风险、理解系统、引领信任”。原创 2025-05-02 03:45:00 · 793 阅读 · 0 评论 -
基于语义的需求分析和测试映射新范式
随着大模型技术的普及,测试工程师的工作将不再仅围绕“脚本编写”,而是围绕**“语义对齐、意图验证、行为预测”**展开。我们应当在测试体系中嵌入语义理解能力,以确保系统的行为真正对齐了用户的意图,实现“语言级需求 → 语义级建模 → 测试级保障”的完整闭环。新时代的测试工程,不是更机械,而是更理解、更感知、更智能。原创 2025-05-03 01:00:00 · 794 阅读 · 0 评论 -
智能灰盒测试:打通静态与动态之间的边界
在软件测试领域,黑盒测试强调从用户视角验证系统行为,白盒测试专注于代码结构覆盖与路径分析,而介于两者之间的灰盒测试,本应融合内外视角,实现更具洞察力的质量评估。但现实中,大多数“灰盒测试”往往只是简单叠加了代码覆盖数据和用例执行日志,缺乏语义关联、行为建模和决策智能。这种“伪灰盒”模式难以支撑复杂系统的质量保障,尤其在AI系统、微服务架构、数据驱动应用中,测试的挑战已远超传统方法所能胜任。我们亟需真正打通静态与动态之间的边界。原创 2025-05-01 03:00:00 · 1510 阅读 · 0 评论