刚入职的数据开发工程师需要怎么做?一份系统指南

刚入职的数据开发工程师需要怎么做?一份系统指南

随着数据驱动决策逐渐成为企业标配,数据开发工程师这个角色正变得愈发重要。对于刚入职的新手来说,可能会感到信息繁杂,不知从何学起。本文将围绕核心技能、技术栈、常见工具及工作中的注意事项,帮助你快速适应数据开发岗位。



一、数据开发工程师是做什么的?

数据开发主要负责构建企业的数据管道(Data Pipeline),包括数据的采集、清洗、转换、建模与调度,为数据分析和数据产品提供可靠的底层支撑。

二、核心技能要求

  1. 扎实的 SQL 基础
    SQL 是数据开发的“母语”。无论是 Hive、Spark SQL 还是传统的 MySQL/PostgreSQL,熟练掌握以下能力非常关键:

多表 JOIN、子查询、窗口函数

数据聚合与分组统计

性能优化(如索引、分区、limit-pushdown 等)

  1. 掌握一种编程语言
    以 Python 为主,其次是 Java 或 Scala(取决于公司的大数据框架):

Python:用于脚本开发、ETL任务、数据质量校验

Java/Scala:在 Spark 等分布式计算中更常用

  1. 熟悉 ETL 工程原理
    了解数据开发的“建管用”:

数据源(如 MySQL、API、日志、Kafka)

数据中转(如 ODS、DWD、DWS 分层建模)

数据加载、调度与质量控制

  1. 理解常见数据建模方法
    尤其是 数仓建模(星型模型、雪花模型) 和 数据湖架构(如 Hudi、Iceberg)。

  2. 熟悉主流数据开发工具与平台
    数据处理:Hive / Spark / Flink

数据仓库:ClickHouse / Doris / StarRocks / Redshift

工作流调度:Airflow / Azkaban / DolphinScheduler

数据集成工具:Flink CDC / DataX / Sqoop

三、新手入职的注意事项

  1. 从理解业务出发
    技术只是手段,业务才是目的。建议从以下几个角度切入:

你做的表服务于哪类业务决策?
上游数据来源是哪些系统?
下游有哪些依赖方和可视化需求?

  1. 数据质量第一
    不要忽视“脏数据”和“断链问题”。建议:
    熟悉断更监控、行数校验、数据稽核等常见数据质量检查机制

每次上线都做详细数据比对,确保数据准确性

  1. 日志与版本控制
    所有 SQL 和脚本建议使用 Git 版本管理
    记录变更说明,有助于协作和问题回溯

  2. 善用文档与知识库
    入职初期要多翻阅项目文档,自己也要及时记录规范、字段含义、表结构等资料,避免“口口相传”。

四、新手入职的七个习惯:越早养成越好!

  1. ✅ 第一件事:看数据字典
    入职后千万不要一上来就写 SQL,应该先去了解:
    每张表的含义和上下游依赖
    字段含义、单位、枚举值说明
    表所属的数仓层级(ODS/DWD/DWS/ADS)
    📌 数据字典是理解业务的第一步,不懂字段含义,写出的 SQL 就没有意义。

  2. 🚫 禁止使用 SELECT *
    虽然方便,但这属于不规范的行为:
    不利于下游字段追踪和血缘分析
    增加数据传输负担和查询资源消耗
    如果上游字段结构变更,下游任务容易失败
    建议:始终明确写出需要的字段名,并尽量避免 SELECT DISTINCT *、GROUP BY 1 这类模糊语法。
    WHERE条件优化:
    避免在WHERE子句中使用函数:例如,避免写 WHERE YEAR(date) = 2020,尽量使用 WHERE date BETWEEN ‘2020-01-01’ AND ‘2020-12-31’,这样数据库能利用索引。
    使用 IN 替代多个 OR:例如 WHERE column IN (1, 2, 3) 优于 WHERE column = 1 OR column = 2 OR column = 3,这样数据库能优化查询计划。
    索引优化:
    创建索引:对查询中频繁使用的字段(尤其是 WHERE 和 JOIN 子句中的字段)创建索引。例如,CREATE INDEX idx_column_name ON table_name(column_name);。
    避免过多索引:每个索引都会增加 INSERT、UPDATE 和 DELETE 的时间,避免在不常查询的字段上创建索引。
    索引选择性:优先在高选择性(例如,字段有较多唯一值)的列上创建索引,低选择性列上创建索引效果差。
    JOIN优化:
    选择合适的连接类型:根据需求使用 INNER JOIN、LEFT JOIN 等。通常使用 INNER JOIN 更高效,因为它只返回匹配的记录。
    避免在 JOIN 条件中使用函数:例如,SELECT * FROM table1 t1 JOIN table2 t2 ON YEAR(t1.date) = YEAR(t2.date) 可能会使数据库无法使用索引。

  3. 🔄 每次上线前对比数据差异
    对照上下游表,重点关注:
    数据是否缺失(如 NULL 爆增)
    行数是否剧烈变化
    指标值是否存在跳变
    上线之前最好使用对账 SQL 或稽核工具做数据验证。

  4. 🧾 写好注释和文档
    你今天不写清楚字段含义,未来就是自己或同事踩坑。
    表注释、字段注释一定要补齐
    脚本内要注释逻辑、来源、注意事项
    提交任务时填写变更说明,方便代码审查与版本管理

  5. 📚 从业务中寻找上下文
    “数据开发不是只写 SQL”,更不是“看到指标就聚合”。你应该问:
    这个指标服务哪个业务部门?
    它代表了什么业务现象?是否有业务周期或延迟?
    有没有边界条件、异常逻辑、口径标准?
    懂业务的人写出来的数据,才真正有价值。

  6. 🚫 慎用 DELETE 和 UPDATE 操作
    这两种操作容易篡改数据,且违反《中华人民共和国数据安全法》。
    在数据开发过程中,尽量避免使用 DELETE 和 UPDATE 来操作数据,尤其是在没有经过严格验证的情况下。
    如果必须使用,务必做好备份,并进行数据验证和审批流程。确保操作不会对生产环境的数据安全和业务产生不良影响。
    如果上层让你干,请务必留下他们让你干的痕迹 。(这里说的是非常明显的篡改数据 ),如果是 运营的需求,如果有邮件则没有问题 。

  7. 🔐 遵守数据安全和隐私保护法规
    在中国,数据安全和隐私保护已成为法律要求的重点。作为数据开发者,必须:
    严格遵守《中华人民共和国数据安全法》:确保数据采集、存储、处理和传输的全过程符合国家安全要求,防止数据泄露、滥用或非法访问。
    遵循《中华人民共和国个人信息保护法》:在处理个人信息时,必须获得用户同意,明确告知数据用途,并采取必要的技术措施保护个人隐私。
    实施数据脱敏和加密:对于敏感数据,采用脱敏处理和加密存储,防止在数据传输和存储过程中泄露。
    定期进行安全审计和合规检查:确保数据处理活动符合最新的法律法规要求,并及时调整数据处理策略。

五、 数据开发如何开展团队合作?

一、数据开发为什么需要协作?
数据开发链条长、依赖多,涉及:
多个数据源的接入与同步
上下游表之间的强依赖关系
分层建模、调度编排、质量监控等多个环节
🧠 任何一个环节出错,都会“牵一发而动全身”。因此,标准化协作机制是保障整个数据平台稳定运行的核心。

二、团队协作的关键维度

  1. 分工明确:职责边界清晰
    在成熟团队中,数据开发通常会划分以下角色(或责任):

角色 职责

角色职责
数据接入工程师负责日志/数据库/Kafka等数据源的接入,确保原始数据可用性
数仓建模工程师负责 ODS → DWD → DWS 等模型设计,抽象出统一数据口径
指标开发工程师基于 DWS/ADS 产出指标结果表,服务报表或可视化系统
调度运维工程师管理 DAG 调度、任务依赖、运行监控及故障恢复机制
数据质量工程师负责监控数据完整性、准确性、稽核逻辑和异常报警

在小团队中,可能一人多岗,但职责也应尽量清晰。

  1. 规范统一:开发规范是协作的前提
    一个好的团队协作,离不开统一的“技术语言”,包括:
    ✅ 命名规范(表名、字段、任务)
    避免缩写、拼音命名
    表名体现层级(如:ods_, dwd_, dws_)
    字段说明写清含义、单位、口径
    ✅ 目录结构标准
    按项目/主题域分类
    每张表有独立的目录存放开发脚本和说明文档

✅ Git 提交规范
提交前代码审查(Review)
注明变更内容和影响范围
避免直接改线上 SQL

  1. 血缘管理:理清上下游依赖关系
    在多人协作下,表血缘管理尤为重要:
    新建表或字段前,确认是否已有类似字段或重复计算逻辑
    每张表必须清楚:它依赖了谁,又被谁依赖
    使用工具(如 DataMap、Atlas、OneData)建立血缘视图
    避免“撞车式开发”,防止改了上游影响下游结果。

  2. 版本与文档管理
    使用 Git 或 SVN 管理 SQL 和配置文件,支持回滚和分支协作

建议每个任务都有说明文档:数据源、加工逻辑、使用场景、注意事项
文档平台推荐:Confluence、Notion、语雀、飞书文档等

  1. 调度协同:避免资源冲突和依赖出错
    调度协作需要:
    将任务划入正确的 DAG 图中(如 Airflow DAG、Azkaban Flow)
    合理设置优先级、资源限制(避免并发造成集群爆炸)
    对任务依赖做显式声明,必要时加上失败重试逻辑

  2. 沟通协作:信息同步机制
    日常使用钉钉/企业微信/Slack 创建项目群
    每日/每周例会同步进度,及时暴露风险
    上线前通知相关上下游开发人员确认影响
    大改动需要提交变更评审(Data Change Review)

三、新人在团队中的协作建议

建议说明
先问清楚再动手避免重复造轮子或误操作老数据表
所有改动都留痕提交到 Git,有变更记录
不懂就问,主动同步项目初期主动与上游/下游开发沟通
每周自查数据质量查行数、查 NULL、查异常值趋势
养成写文档的习惯每次开发写清字段定义和逻辑说明

六、结语

数据开发看似“搬砖”,实则是数据体系的基建者。刚入职时不要急于求成,踏实掌握每项基本功,多问、多学、多实践。希望本文能为你点亮数据开发之路的第一盏灯。

欢迎留言分享你的数据开发成长故事,我们一起进步!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小Tomkk

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值