刚入职的数据开发工程师需要怎么做?一份系统指南
随着数据驱动决策逐渐成为企业标配,数据开发工程师这个角色正变得愈发重要。对于刚入职的新手来说,可能会感到信息繁杂,不知从何学起。本文将围绕核心技能、技术栈、常见工具及工作中的注意事项,帮助你快速适应数据开发岗位。
文章目录
一、数据开发工程师是做什么的?
数据开发主要负责构建企业的数据管道(Data Pipeline),包括数据的采集、清洗、转换、建模与调度,为数据分析和数据产品提供可靠的底层支撑。
二、核心技能要求
- 扎实的 SQL 基础
SQL 是数据开发的“母语”。无论是 Hive、Spark SQL 还是传统的 MySQL/PostgreSQL,熟练掌握以下能力非常关键:
多表 JOIN、子查询、窗口函数
数据聚合与分组统计
性能优化(如索引、分区、limit-pushdown 等)
- 掌握一种编程语言
以 Python 为主,其次是 Java 或 Scala(取决于公司的大数据框架):
Python:用于脚本开发、ETL任务、数据质量校验
Java/Scala:在 Spark 等分布式计算中更常用
- 熟悉 ETL 工程原理
了解数据开发的“建管用”:
数据源(如 MySQL、API、日志、Kafka)
数据中转(如 ODS、DWD、DWS 分层建模)
数据加载、调度与质量控制
-
理解常见数据建模方法
尤其是 数仓建模(星型模型、雪花模型) 和 数据湖架构(如 Hudi、Iceberg)。 -
熟悉主流数据开发工具与平台
数据处理:Hive / Spark / Flink
数据仓库:ClickHouse / Doris / StarRocks / Redshift
工作流调度:Airflow / Azkaban / DolphinScheduler
数据集成工具:Flink CDC / DataX / Sqoop
三、新手入职的注意事项
- 从理解业务出发
技术只是手段,业务才是目的。建议从以下几个角度切入:
你做的表服务于哪类业务决策?
上游数据来源是哪些系统?
下游有哪些依赖方和可视化需求?
- 数据质量第一
不要忽视“脏数据”和“断链问题”。建议:
熟悉断更监控、行数校验、数据稽核等常见数据质量检查机制
每次上线都做详细数据比对,确保数据准确性
-
日志与版本控制
所有 SQL 和脚本建议使用 Git 版本管理
记录变更说明,有助于协作和问题回溯 -
善用文档与知识库
入职初期要多翻阅项目文档,自己也要及时记录规范、字段含义、表结构等资料,避免“口口相传”。
四、新手入职的七个习惯:越早养成越好!
-
✅ 第一件事:看数据字典
入职后千万不要一上来就写 SQL,应该先去了解:
每张表的含义和上下游依赖
字段含义、单位、枚举值说明
表所属的数仓层级(ODS/DWD/DWS/ADS)
📌 数据字典是理解业务的第一步,不懂字段含义,写出的 SQL 就没有意义。 -
🚫 禁止使用 SELECT *
虽然方便,但这属于不规范的行为:
不利于下游字段追踪和血缘分析
增加数据传输负担和查询资源消耗
如果上游字段结构变更,下游任务容易失败
建议:始终明确写出需要的字段名,并尽量避免 SELECT DISTINCT *、GROUP BY 1 这类模糊语法。
WHERE条件优化:
避免在WHERE子句中使用函数:例如,避免写 WHERE YEAR(date) = 2020,尽量使用 WHERE date BETWEEN ‘2020-01-01’ AND ‘2020-12-31’,这样数据库能利用索引。
使用 IN 替代多个 OR:例如 WHERE column IN (1, 2, 3) 优于 WHERE column = 1 OR column = 2 OR column = 3,这样数据库能优化查询计划。
索引优化:
创建索引:对查询中频繁使用的字段(尤其是 WHERE 和 JOIN 子句中的字段)创建索引。例如,CREATE INDEX idx_column_name ON table_name(column_name);。
避免过多索引:每个索引都会增加 INSERT、UPDATE 和 DELETE 的时间,避免在不常查询的字段上创建索引。
索引选择性:优先在高选择性(例如,字段有较多唯一值)的列上创建索引,低选择性列上创建索引效果差。
JOIN优化:
选择合适的连接类型:根据需求使用 INNER JOIN、LEFT JOIN 等。通常使用 INNER JOIN 更高效,因为它只返回匹配的记录。
避免在 JOIN 条件中使用函数:例如,SELECT * FROM table1 t1 JOIN table2 t2 ON YEAR(t1.date) = YEAR(t2.date) 可能会使数据库无法使用索引。 -
🔄 每次上线前对比数据差异
对照上下游表,重点关注:
数据是否缺失(如 NULL 爆增)
行数是否剧烈变化
指标值是否存在跳变
上线之前最好使用对账 SQL 或稽核工具做数据验证。 -
🧾 写好注释和文档
你今天不写清楚字段含义,未来就是自己或同事踩坑。
表注释、字段注释一定要补齐
脚本内要注释逻辑、来源、注意事项
提交任务时填写变更说明,方便代码审查与版本管理 -
📚 从业务中寻找上下文
“数据开发不是只写 SQL”,更不是“看到指标就聚合”。你应该问:
这个指标服务哪个业务部门?
它代表了什么业务现象?是否有业务周期或延迟?
有没有边界条件、异常逻辑、口径标准?
懂业务的人写出来的数据,才真正有价值。 -
🚫 慎用 DELETE 和 UPDATE 操作
这两种操作容易篡改数据,且违反《中华人民共和国数据安全法》。
在数据开发过程中,尽量避免使用 DELETE 和 UPDATE 来操作数据,尤其是在没有经过严格验证的情况下。
如果必须使用,务必做好备份,并进行数据验证和审批流程。确保操作不会对生产环境的数据安全和业务产生不良影响。
如果上层让你干,请务必留下他们让你干的痕迹 。(这里说的是非常明显的篡改数据 ),如果是 运营的需求,如果有邮件则没有问题 。 -
🔐 遵守数据安全和隐私保护法规
在中国,数据安全和隐私保护已成为法律要求的重点。作为数据开发者,必须:
严格遵守《中华人民共和国数据安全法》:确保数据采集、存储、处理和传输的全过程符合国家安全要求,防止数据泄露、滥用或非法访问。
遵循《中华人民共和国个人信息保护法》:在处理个人信息时,必须获得用户同意,明确告知数据用途,并采取必要的技术措施保护个人隐私。
实施数据脱敏和加密:对于敏感数据,采用脱敏处理和加密存储,防止在数据传输和存储过程中泄露。
定期进行安全审计和合规检查:确保数据处理活动符合最新的法律法规要求,并及时调整数据处理策略。
五、 数据开发如何开展团队合作?
一、数据开发为什么需要协作?
数据开发链条长、依赖多,涉及:
多个数据源的接入与同步
上下游表之间的强依赖关系
分层建模、调度编排、质量监控等多个环节
🧠 任何一个环节出错,都会“牵一发而动全身”。因此,标准化协作机制是保障整个数据平台稳定运行的核心。
二、团队协作的关键维度
- 分工明确:职责边界清晰
在成熟团队中,数据开发通常会划分以下角色(或责任):
角色 职责
角色 | 职责 |
---|---|
数据接入工程师 | 负责日志/数据库/Kafka等数据源的接入,确保原始数据可用性 |
数仓建模工程师 | 负责 ODS → DWD → DWS 等模型设计,抽象出统一数据口径 |
指标开发工程师 | 基于 DWS/ADS 产出指标结果表,服务报表或可视化系统 |
调度运维工程师 | 管理 DAG 调度、任务依赖、运行监控及故障恢复机制 |
数据质量工程师 | 负责监控数据完整性、准确性、稽核逻辑和异常报警 |
在小团队中,可能一人多岗,但职责也应尽量清晰。
- 规范统一:开发规范是协作的前提
一个好的团队协作,离不开统一的“技术语言”,包括:
✅ 命名规范(表名、字段、任务)
避免缩写、拼音命名
表名体现层级(如:ods_, dwd_, dws_)
字段说明写清含义、单位、口径
✅ 目录结构标准
按项目/主题域分类
每张表有独立的目录存放开发脚本和说明文档
✅ Git 提交规范
提交前代码审查(Review)
注明变更内容和影响范围
避免直接改线上 SQL
-
血缘管理:理清上下游依赖关系
在多人协作下,表血缘管理尤为重要:
新建表或字段前,确认是否已有类似字段或重复计算逻辑
每张表必须清楚:它依赖了谁,又被谁依赖
使用工具(如 DataMap、Atlas、OneData)建立血缘视图
避免“撞车式开发”,防止改了上游影响下游结果。 -
版本与文档管理
使用 Git 或 SVN 管理 SQL 和配置文件,支持回滚和分支协作
建议每个任务都有说明文档:数据源、加工逻辑、使用场景、注意事项
文档平台推荐:Confluence、Notion、语雀、飞书文档等
-
调度协同:避免资源冲突和依赖出错
调度协作需要:
将任务划入正确的 DAG 图中(如 Airflow DAG、Azkaban Flow)
合理设置优先级、资源限制(避免并发造成集群爆炸)
对任务依赖做显式声明,必要时加上失败重试逻辑 -
沟通协作:信息同步机制
日常使用钉钉/企业微信/Slack 创建项目群
每日/每周例会同步进度,及时暴露风险
上线前通知相关上下游开发人员确认影响
大改动需要提交变更评审(Data Change Review)
三、新人在团队中的协作建议
建议 | 说明 |
---|---|
先问清楚再动手 | 避免重复造轮子或误操作老数据表 |
所有改动都留痕 | 提交到 Git,有变更记录 |
不懂就问,主动同步 | 项目初期主动与上游/下游开发沟通 |
每周自查数据质量 | 查行数、查 NULL、查异常值趋势 |
养成写文档的习惯 | 每次开发写清字段定义和逻辑说明 |
六、结语
数据开发看似“搬砖”,实则是数据体系的基建者。刚入职时不要急于求成,踏实掌握每项基本功,多问、多学、多实践。希望本文能为你点亮数据开发之路的第一盏灯。
欢迎留言分享你的数据开发成长故事,我们一起进步!