在一个2^k * 2k(k为正整数,k<=10,length=2k)个方格组成的棋盘中,恰有一个方格与其他方格不同,称该方格为一特殊方格(其坐标为aa,bb,分别代表行坐标号和列坐标号),以及有四种L型骨牌(如下图)。求用若干块这种L型骨牌实现除该特殊点棋盘的全覆盖。(本题要求采用分治算法做)
输入格式:
输入三个数,分别是aa,bb,length.
输出格式:
输出整个棋盘。其中特殊方格填为0,然后铺棋盘的顺序为:先铺四个子棋盘交界的部分,然后递归的对每个子棋盘按照左上,右上,右下,左下的顺时针顺序铺满棋盘。每一块骨牌中三个方格数字相同,按照顺序标号,即第一块骨牌全标为1,第二块骨牌全标为2,…,以此类推。输出的每个数占4个场宽,右对齐。
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include
using namespace std;
#define N 1024
int Board[N][N];
int count = 1;
//(tr,tc)表示棋盘的起始位置
//(dr,dc)表示特殊点的位置
void ChessBoard(int tr,int tc,int dr,int dc,int length){
if(length == 1){
return;
}
int t = count++;
int s = length/2;
if(dr&l