理解 FPGA 的关键知识点整理

虽说接触和学习 FPGA 有一段时间了,但每次在给人介绍FPGA时,还是不能说得很清楚。因为呢,FPGA还是很有门槛的。所以,针对FPGA的关键知识再学习和整理了一次。供参考,对于FPGA老鸟,直接跳过,如果是初学者,可以看看。

FPGA 做为一个特殊的芯片,为什么存在?原理如何?如何设计和使用FPGA。

1:什么是FPGA?

要理解FPGA,如果连计算机结构都不清楚(比如:冯诺依曼架构,标准指令集),还有数字集成电路设计(组合/时序逻辑,逻辑综合,CMOS电路,时序分析,布局布线,低功耗设计,存储设计,电路测试和验证),这些还是得大致了解一下。

最基础的知识: 乘法是可以通过 加(Add) 和 移位(Shift)来完成,

所以,加法器和移位器是一切运算的基础。这个很重要!!!!!

如上图,是移动运算和加法运算。

那具体我们要运算时,有哪些实现方案呢?这里要注意了,特别是做软件的同学,有两种方案:

一种是硬件方案,一种是软件方案,如何理解?

1.1:运算的软/硬件实现方案

以 4位(二进制)乘以 4位(二进制),我们的实现方案分为软件,硬件实现方案。

对于一个数学运算,我们可以通过软件来实现,比如:CPU

软件的实现方案就是:冯式定理,通过控制器,运算器,内存。控制器确认流程,接受输入,运算时通过内存来缓存中间结果,缓存数据再运算时做数据搬运,最终给出输出。

于是,会有很多搬运的过程。(冯式原理,也就是软件的计算原理,如下)

这种做法,非常符合人的思维习惯,相当于把一个问题拆成多个步骤,按顺序来执行。

另外,软件同学并不熟悉的是:可以通过硬件方式来实现:

上图是四位的乘法。如果我们认为4位的乘法是由多次移位和加法组成的,在软件实现时,可能会把一个乘法变成多次的运算,中间结果用内存来缓存。但是,在上图的硬件实现中,我们直接把运算的过程全部通过硬件一次完成了。当然, 它在往后传递数据,进行运算时,必须要保证同步。而同步实际上是靠其它来保证(这里不细讲了)。但确实,它没有缓存,搬运数据的过程,速度更快。

上图表达了最重要的 组织逻辑,时序逻辑的实现。前者不依赖历史和状态。后者依赖历史和状态有记忆的能力。

硬件可以将运算并行,总是在第一时间拿到结果后,立即进行下一步运算,运算更快。

结论:硬件的实现比软件的能耗比更低。硬件更快,消耗能量更小。

软件有很多高级编程语言来支持,符合人的思考逻辑,开发效率高。

硬件实现较复杂,开发难度大,并且,一旦在硬件上实现,不能修改,生产成本也很高。

1.2:FPGA可以结合软硬件的优势 

那如何结合软件和硬件的优势?

FPGA是其中一种可编程的方式(运行快,可编程)Programable circuit

随着FPGA的工艺提升,芯片的产量越大,消耗越高,高于某个特定量,ASIC的成本会低于FPGA。

1.3:FPGA的特点

当然,FPGA的劣势也很明显:

1:编程难度大。

对于软件,只需要学习简单的指令,做一下编译就OK了。属于指令架构。

对于FPGA的编程,除了要学会电路编程语言verilog以外,还需要学会如何 Synthesis,place,rout,逻辑电路还需要映射到当前FPGA的 Primitive Cell。

2:比 ASIC 更贵一些(10x的面积),

3:比 ASIC 更慢一些。(3x的差距)

以上讲了那么多,关键是讲了FPGA

### RT-DETRv3 网络结构分析 RT-DETRv3 是一种基于 Transformer 的实时端到端目标检测算法,其核心在于通过引入分层密集正监督方法以及一系列创新性的训练策略,解决了传统 DETR 模型收敛慢和解码器训练不足的问题。以下是 RT-DETRv3 的主要网络结构特点: #### 1. **基于 CNN 的辅助分支** 为了增强编码器的特征表示能力,RT-DETRv3 引入了一个基于卷积神经网络 (CNN) 的辅助分支[^3]。这一分支提供了密集的监督信号,能够与原始解码器协同工作,从而提升整体性能。 ```python class AuxiliaryBranch(nn.Module): def __init__(self, in_channels, out_channels): super(AuxiliaryBranch, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1) self.bn = nn.BatchNorm2d(out_channels) def forward(self, x): return F.relu(self.bn(self.conv(x))) ``` 此部分的设计灵感来源于传统的 CNN 架构,例如 YOLO 系列中的 CSPNet 和 PAN 结构[^2],这些技术被用来优化特征提取效率并减少计算开销。 --- #### 2. **自注意力扰动学习策略** 为解决解码器训练不足的问题,RT-DETRv3 提出了一种名为 *self-att 扰动* 的新学习策略。这种策略通过对多个查询组中阳性样本的标签分配进行多样化处理,有效增加了阳例的数量,进而提高了模型的学习能力和泛化性能。 具体实现方式是在训练过程中动态调整注意力权重分布,确保更多的高质量查询可以与真实标注 (Ground Truth) 进行匹配。 --- #### 3. **共享权重解编码器分支** 除了上述改进外,RT-DETRv3 还引入了一个共享权重的解编码器分支,专门用于提供密集的正向监督信号。这一设计不仅简化了模型架构,还显著降低了参数量和推理时间,使其更适合实时应用需求。 ```python class SharedDecoderEncoder(nn.Module): def __init__(self, d_model, nhead, num_layers): super(SharedDecoderEncoder, self).__init__() decoder_layer = nn.TransformerDecoderLayer(d_model=d_model, nhead=nhead) self.decoder = nn.TransformerDecoder(decoder_layer, num_layers=num_layers) def forward(self, tgt, memory): return self.decoder(tgt=tgt, memory=memory) ``` 通过这种方式,RT-DETRv3 实现了高效的目标检测流程,在保持高精度的同时大幅缩短了推理延迟。 --- #### 4. **与其他模型的关系** 值得一提的是,RT-DETRv3 并未完全抛弃经典的 CNN 技术,而是将其与 Transformer 结合起来形成混合架构[^4]。例如,它采用了 YOLO 系列中的 RepNCSP 模块替代冗余的多尺度自注意力层,从而减少了不必要的计算负担。 此外,RT-DETRv3 还借鉴了 DETR 的一对一匹配策略,并在此基础上进行了优化,进一步提升了小目标检测的能力。 --- ### 总结 综上所述,RT-DETRv3 的网络结构主要包括以下几个关键组件:基于 CNN 的辅助分支、自注意力扰动学习策略、共享权重解编码器分支以及混合编码器设计。这些技术创新共同推动了实时目标检测领域的发展,使其在复杂场景下的表现更加出色。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值