布莱恩·克尼根算法
题目描述1
编写一个函数,输入是一个无符号整数(以二进制串的形式),返回其二进制表达式中数字位数为 ‘1’ 的个数(也被称为汉明重量)。
提示:
请注意,在某些语言(如 Java)中,没有无符号整数类型。在这种情况下,输入和输出都将被指定为有符号整数类型,并且不应影响您的实现,因为无论整数是有符号的还是无符号的,其内部的二进制表示形式都是相同的。
在 Java 中,编译器使用二进制补码记法来表示有符号整数。因此,在上面的 示例 3 中,输入表示有符号整数 -3。
示例 1:
输入:00000000000000000000000000001011
输出:3
解释:输入的二进制串 00000000000000000000000000001011 中,共有三位为 ‘1’。
示例 2:
输入:00000000000000000000000010000000
输出:1
解释:输入的二进制串 00000000000000000000000010000000 中,共有一位为 ‘1’。
示例 3:
输入:11111111111111111111111111111101
输出:31
解释:输入的二进制串 11111111111111111111111111111101 中,共有 31 位为 ‘1’。
提示:
输入必须是长度为 32 的 二进制串 。
代码
public class Solution {
// you need to treat n as an unsigned value
public int hammingWeight(int n) {
int count=0;
if(n==0) return 0;
while(n!=0){
n&=n-1;
count++;
}
return count;
}
}
题目描述2
两个整数之间的 汉明距离 指的是这两个数字对应二进制位不同的位置的数目。
给你两个整数 x 和 y,计算并返回它们之间的汉明距离。
示例 1:
输入:x = 1, y = 4
输出:2
解释:
1 (0 0 0 1)
4 (0 1 0 0)
↑ ↑
上面的箭头指出了对应二进制位不同的位置。
示例 2:
输入:x = 3, y = 1
输出:1
提示:
0 <= x, y <= 2^31 - 1
解题思路:
根据题目的描述以及答案可以分析出:求的是两个数相同位对应数的不相等的数目;所以可以首先通过“异或”运算来将两个数化为想要的结果,然后在根据布莱恩·克尼根算法来进行求解。
代码
class Solution {
public int hammingDistance(int x, int y) {
int count=0;
int n=x^y;
if(n==0) return 0;
while(n!=0){
n&=n-1;
count++;
}
return count;
}
}
附加知识点:
与(&)运算:对应位全都为1的时候,结果为1,否则,结果为0。比如:
异或(^)运算:对应位相同时,为0;否则为1。比如: