动态规划 贪心算法

一共有 n个数,第 i 个数是 xi
xi 可以取 [li , ri] 中任意的一个值。
设 S=∑xi2S = \sum{{x_i}^2}S=∑xi​2,求 S 种类数。

 

#include <bits/stdc++.h>
using namespace std;
#include<vector>

int a[100][100];
vector<int> vec;
int fun(int d){
	vector <int>().swap(vec);
	for(int i = 0; i < 100; i++){
		if(a[d][i] != 0){
			int s = a[d][i];
			for(int j = 0; j < 100; j++){
				if(a[d+1][j] != 0) vec.push_back(s + a[d+1][j]);
			}
		}
	}
	sort(vec.begin(), vec.end());
	vec.erase(unique(vec.begin(), vec.end()), vec.end());
	for(int i = 0; i < vec.size(); i++){
		a[d+1][i] = vec[i];
	}
}
int main(){
	int n;
	cin>>n;// n行 
	// 二维数组初始化 
	
	for(int i = 0; i < n; i++){
		for(int j = 0; j < 100; j++){
			a[i][j] = 0;
		}
	}
	int left, right;
	for(int i = 0; i < n; i++) {
		cin>>left>>right;
		int chu = left;
		for(int j = 0; j < right- left + 1; j++){
			a[i][j] = chu;
			chu++;
		}
	}
	// 输出二维数组 
	for(int i = 0; i < n; i++){
		for(int j = 0; j < 100; j++){
			cout<<a[i][j]<<" ";
		}
		cout<<endl;
	}
	// 平方和二维数组
	cout<<"------------------------------"<<endl;
	for(int i = 0; i < n; i++){
		for(int j = 0; j < 100; j++){
			a[i][j]=a[i][j]*a[i][j];
			cout<<a[i][j]<<" ";
		}
		cout<<endl;
	} 
	// 判断是否 重复 平方和,每行选一个数
	 
	//dp
	/*fun(0);
	
	cout<<"第二行是否改变";
	for(int i = 0; i < n; i++){
		for(int j = 0; j < 100; j++){
			cout<<a[i][j]<<" ";
		}
		cout<<endl;
	}
	fun(1);
	
	cout<<"第3行是否改变";
	for(int i = 0; i < n; i++){
		for(int j = 0; j < 100; j++){
			cout<<a[i][j]<<" ";
		}
		cout<<endl;
	}
	*/
	// dp
	
	for(int i = 0; i < n-1; i++){
		fun(i);
	}
	
	
	vec.erase(unique(vec.begin(), vec.end()), vec.end());
	cout<<"最终答案"<<vec.size();
	
	 
	return 0;
}
#include <bits/stdc++.h>
using namespace std;

int t,n,m;
bitset<1000005> dp[110];  // bitset存储二进制数位的 数组 
int l,r;

int main(){
	cin>>n;
	dp[0][0]=1;
	for(int i=1;i<=n;i++){
		cin>>l>>r;
		for(int j=l;j<=r;j++){
			dp[i]|=(dp[i-1]<<(j*j));// 每次往左移 j * j 位 ,然后或等于将重复的舍去了。  这是一个状态转移方程 
			//  用bitset优化,dp,每输入一个范围,就是在前面已经计算的基础上加上这次范围内的数,每一次都加上l 到 r的范围的值,用|代替加法,
			// <<i*i把答案加入到数组中。状态转移方程是a[i]|=a[i-1]<<(i*i);
			//cout<<dp[i]<<endl;
			
			
		}
		cout<<endl;
	}
	//cout<<dp[n].count()<<endl; // b中值为1的二进制位的个数 
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值