一共有 n个数,第 i 个数是 xi
xi 可以取 [li , ri] 中任意的一个值。
设 S=∑xi2S = \sum{{x_i}^2}S=∑xi2,求 S 种类数。
#include <bits/stdc++.h>
using namespace std;
#include<vector>
int a[100][100];
vector<int> vec;
int fun(int d){
vector <int>().swap(vec);
for(int i = 0; i < 100; i++){
if(a[d][i] != 0){
int s = a[d][i];
for(int j = 0; j < 100; j++){
if(a[d+1][j] != 0) vec.push_back(s + a[d+1][j]);
}
}
}
sort(vec.begin(), vec.end());
vec.erase(unique(vec.begin(), vec.end()), vec.end());
for(int i = 0; i < vec.size(); i++){
a[d+1][i] = vec[i];
}
}
int main(){
int n;
cin>>n;// n行
// 二维数组初始化
for(int i = 0; i < n; i++){
for(int j = 0; j < 100; j++){
a[i][j] = 0;
}
}
int left, right;
for(int i = 0; i < n; i++) {
cin>>left>>right;
int chu = left;
for(int j = 0; j < right- left + 1; j++){
a[i][j] = chu;
chu++;
}
}
// 输出二维数组
for(int i = 0; i < n; i++){
for(int j = 0; j < 100; j++){
cout<<a[i][j]<<" ";
}
cout<<endl;
}
// 平方和二维数组
cout<<"------------------------------"<<endl;
for(int i = 0; i < n; i++){
for(int j = 0; j < 100; j++){
a[i][j]=a[i][j]*a[i][j];
cout<<a[i][j]<<" ";
}
cout<<endl;
}
// 判断是否 重复 平方和,每行选一个数
//dp
/*fun(0);
cout<<"第二行是否改变";
for(int i = 0; i < n; i++){
for(int j = 0; j < 100; j++){
cout<<a[i][j]<<" ";
}
cout<<endl;
}
fun(1);
cout<<"第3行是否改变";
for(int i = 0; i < n; i++){
for(int j = 0; j < 100; j++){
cout<<a[i][j]<<" ";
}
cout<<endl;
}
*/
// dp
for(int i = 0; i < n-1; i++){
fun(i);
}
vec.erase(unique(vec.begin(), vec.end()), vec.end());
cout<<"最终答案"<<vec.size();
return 0;
}
#include <bits/stdc++.h>
using namespace std;
int t,n,m;
bitset<1000005> dp[110]; // bitset存储二进制数位的 数组
int l,r;
int main(){
cin>>n;
dp[0][0]=1;
for(int i=1;i<=n;i++){
cin>>l>>r;
for(int j=l;j<=r;j++){
dp[i]|=(dp[i-1]<<(j*j));// 每次往左移 j * j 位 ,然后或等于将重复的舍去了。 这是一个状态转移方程
// 用bitset优化,dp,每输入一个范围,就是在前面已经计算的基础上加上这次范围内的数,每一次都加上l 到 r的范围的值,用|代替加法,
// <<i*i把答案加入到数组中。状态转移方程是a[i]|=a[i-1]<<(i*i);
//cout<<dp[i]<<endl;
}
cout<<endl;
}
//cout<<dp[n].count()<<endl; // b中值为1的二进制位的个数
return 0;
}