win11的ubuntu子系统 WSL2 下配置cuda、cudnn、GPU pytorch环境

该博客详细介绍了如何在Ubuntu子系统中安装CUDA和CUDNN,以及配置PyTorch的GPU环境。首先,通过链接指导安装和卸载Ubuntu子系统。接着,按照步骤安装CUDA驱动、SDK,并设置环境变量。然后,下载并安装CUDNN,验证CUDA安装成功。最后,提到了安装Miniconda和PyTorch的流程,并通过运行Python代码验证GPU支持。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.安装、卸载Ubuntu子系统

安装:https://zhuanlan.zhihu.com/p/76032647
后面的图形化界面,可以不用安装。可以使用ssh:
参考:https://www.jianshu.com/p/79b2a7916cfd
【注意】:在每次用子系统时,用

sudo service ssh restart

重启SSH服务。

卸载:https://blog.csdn.net/zhezhebie/article/details/102646909

子系统安装

2.安装cuda、cudnn环境

参考:https://blog.csdn.net/weixin_44029053/article/details/119480776

2.1安装cuda on wsl驱动到宿主Windows系统

官网:https://developer.nvidia.com/cuda/wsl/download
在这里插入图片描述

选第一个【GEFORCE DRIVER】安装,因为你的显卡一般是GEFORCE游戏显卡。

2.2安装cuda sdk

换源安装cuda-toolkit:

sudo apt-key adv --fetch-keys https://developer.download.nvidia.cn/compute/cuda/repos/ubuntu2004/x86_64/7fa2af80.pub
sudo sh -c ‘echo “deb https://developer.download.nvidia.cn/compute/cuda/repos/ubuntu2004/x86_64/” > /etc/apt/sources.list.d/cuda.list’
sudo apt-get install -y cuda-toolkit-11-1

2.3设置cuda环境变量

sudo vi ~/.bashrc

在这里插入图片描述
如果出现,按 “E”
用vim的方式,进入.bashrc文件
按 “i” 进去插入模式,在文件末尾加上:

export PATH=/usr/local/cuda-11.1/bin${PATH:+:${PATH}}
export LD_LIBRARY_PATH=/usr/local/cuda-11.1/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}

按 “ESC” 推出插入模式,“:wq” 保存并退出vim。
输出如下命令,立即生效。

source ~/.bashrc

如果命令没有找到,可以关闭会话,从新打开子系统会话。

2.4更新库

sudo apt-get install freeglut3-dev build-essential libx11-dev libxmu-dev libxi-dev libgl1-mesa-glx libglu1-mesa libglu1-mesa-dev

2.5查看cuda是否安装成功

nvcc -V

如果还是没有显示版本,退出会话,重新打开Ubuntu子系统,再试一下。
显示下面的内容,表示安装成功:
在这里插入图片描述
如果还是不行,那就重新安装cuda,把2.2的步骤换为如下:
备选方案安装sdk,默认cuda 10.1:

sudo apt install nvidia-cuda-toolkit

2.6安装cudnn

官网:https://developer.nvidia.com/rdp/cudnn-archive
安装cudnn的时候也需要登录Nvidia账号,我下载的如下版本:

在这里插入图片描述
我将文件保存到:

D:\DW

注意,这个路径跟下面的操作有关,(这里的存放路径,原则上必须在子系统里下载安装,但是实际上,和你之前设置的有关):在这里插入图片描述

cd /mnt/d/DW

这里的mnt表示子系统挂靠的位置,d表示d盘,DW表示文件夹,根据上一步的路径,自己更改:
在这里插入图片描述
在子系统命令行里安装:

ar -zxvf cudnn-11.2-linux-x64-v8.1.1.33.tgz
sudo cp -P cuda/lib64/libcudnn* /usr/local/cuda-11.1/lib64/
sudo cp cuda/include/cudnn.h /usr/local/cuda-11.1/include/

为所有用户设置读取权限:

sudo chmod a+r /usr/local/cuda-11.1/include/cudnn.h
sudo chmod a+r /usr/local/cuda-11.1/lib64/libcudnn*

2.7验证cuda是否安装成功

cd /usr/local/cuda/samples/4_Finance/BlackScholes
sudo make

耐心等待编译…
完事后再输入:

./BlackScholes

出现Test passed说明安装成功。

2.2卸载cuda

如果安装不成功,或者不是自己需要的版本,可以卸载之后重新安装:
参考:https://blog.csdn.net/qq_42518956/article/details/108358254
低版本cuda:

 
 cd  /usr/local/cuda/bin
 sudo ./uninstall_cuda_x.x.pl 
 或
 sudo ./cuda-uninstaller

高版本的cuda没有这个文件(拿cuda 11.1举例)所以:

sudo apt-get remove cuda
sudo apt autoremove 
sudo apt-get remove cuda*

然后切换到CUDA所在目录:

cd /usr/local/

输入命令:

sudo dpkg -l |grep cuda

可以看到,还有很多cuda11.1的包,将这些包逐一删除:

sudo dpkg -P cuda-toolkit-11-0(包名) 

一个一个对应删除,因为系统不让使用cuda*直接全部删除,这些都完事,就可以正常安装了
在这里插入图片描述

3.安装Miniconda、pytorch环境

按照这个博客:https://blog.csdn.net/weixin_44029053/article/details/119480776

4.测试

python
import torch
x=torch.rand(5,3)
print(x)
print(torch.cuda.is_available()) 

如果显示True,表示成功安装GPU版本pytorch

<think>好的,我现在需要帮助用户解决在WSL配置GPU加速的深度学习环境的问题。首先,我得回想一下用户提供的引用内容,看看里面有没有关键步骤。根据引用[1],用户需要安装WSLUbuntu22.04,然后配置GPU支持。引用[2]提到CUDA工具包必须安装WSL中,而引用[3]则讨论了安装PyTorch时的版本问题,尤其是CUDA版本可能导致的兼容性问题。 首先,我需要确定整个配置流程的大致步骤。用户可能已经安装WSL,但可能需要确认是否正确安装。接下来是安装NVIDIA驱动,这里要注意用户的主机系统是Windows11,所以需要确保安装的是支持WSL的驱动版本。然后,在WSL安装CUDA工具包,这一步可能会有版本兼容性问题,比如用户提到CUDA11.3对应的PyTorch安装失败,而CUDA10.2成功了,所以可能需要建议用户选择较旧的CUDA版本或者检查PyTorch官网的兼容性表格。 接下来是安装Anaconda,这部分比较常规,但需要确保用户正确设置环境变量。然后创建虚拟环境安装PyTorch或其他深度学习框架。这里要特别注意PyTorch安装命令是否正确对应CUDA版本,避免用户遇到引用[3]中的问题。可能还需要提醒用户验证GPU是否被正确识别,比如使用nvidia-smi命令或者运行PyTorch的测试代码。 另外,用户可能遇到的常见问题包括驱动未正确安装CUDA版本与框架不兼容、环境变量未正确设置等。需要预先想到这些情况,并在教程中给出解决方法或验证步骤。 最后,生成的相关问题需要覆盖安装过程中的各个步骤,可能的问题点,以及优化和应用场景,这样用户如果有进一步的问题可以自行查阅。 现在需要将这些步骤以清晰的结构呈现出来,确保每个步骤都有对应的引用支持,并且语法正确,比如使用正确的LaTeX格式。同时,要检查是否有遗漏的步骤,例如是否需要在WSL安装cuDNN或者其他依赖库,但根据引用内容,可能用户主要通过CUDA工具包和正确版本的PyTorch配置,所以可能不需要额外安装cuDNN,或者PyTorch已经包含了必要的库。 总结,整个教程应该分为系统准备、驱动安装CUDA安装、Anaconda环境配置PyTorch安装以及验证步骤,每个步骤都参考提供的引用内容,并提醒用户注意版本兼容性问题。</think>### 在WSL配置GPU加速的深度学习环境教程 #### 1. 系统准备 - **确认Windows版本**:需使用Windows 11Windows 10(版本2004及以上),并开启WSL2功能[^1]。 - **安装Ubuntu子系统**:从Microsoft Store安装Ubuntu 22.04 LTS,启动后执行更新: ```bash sudo apt update && sudo apt upgrade -y ``` #### 2. 安装NVIDIA驱动 - **Windows端驱动**:下载并安装[NVIDIA驱动(版本470.14或更高)](https://www.nvidia.com/Download/index.aspx),选择“WSL驱动”选项。 - **验证驱动**:在Windows PowerShell中运行: ```bash nvidia-smi ``` 显示GPU信息即表示驱动安装成功。 #### 3. WSL安装CUDA Toolkit - **添加CUDA仓库**: ```bash wget https://developer.download.nvidia.com/compute/cuda/repos/wsl-ubuntu/x86_64/cuda-wsl-ubuntu.pin sudo mv cuda-wsl-ubuntu.pin /etc/apt/preferences.d/cuda-repository-pin-600 sudo apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/cuda/repos/wsl-ubuntu/x86_64/3bf863cc.pub sudo add-apt-repository "deb https://developer.download.nvidia.com/compute/cuda/repos/wsl-ubuntu/x86_64/ /" ``` - **安装CUDA**(推荐兼容版本,如CUDA 11.3): ```bash sudo apt install cuda-11-3 ``` 根据引用[3],若CUDA 11.3与框架不兼容,可尝试更低版本(如CUDA 10.2)。 #### 4. 配置Anaconda环境 - **安装Anaconda**: ```bash wget https://repo.anaconda.com/archive/Anaconda3-2023.03-Linux-x86_64.sh bash Anaconda3-2023.03-Linux-x86_64.sh source ~/.bashrc ``` - **创建虚拟环境**: ```bash conda create -n deeplearning python=3.9 conda activate deeplearning ``` #### 5. 安装PyTorch或其他框架 - **选择对应版本**:参考[PyTorch官网](https://pytorch.org/)的命令(需匹配CUDA版本)[^3]: ```bash # 示例:CUDA 10.2PyTorch安装 pip3 install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu102 ``` - **验证GPU加速**: ```python import torch print(torch.cuda.is_available()) # 应输出True ``` #### 6. 其他依赖 - **安装cuDNN(可选)**:若框架需要,从[NVIDIA开发者网站](https://developer.nvidia.com/cudnn)下载后手动配置
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值