
python
文章平均质量分 77
addict_jun
到底是以欲望,野心为燃料,还是顺气自然,又或者以高尚的理想去照亮前方的路呢。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
python大数据之numpy
每一个【】代表一个轴,轴里面的可以看作元素,如果该元素也有【】,可以看成另一个轴。轴的数量也能反映维度。如果数据太多,他会自动显示边角数据,想要显示全部数据。原创 2022-10-18 10:21:11 · 1237 阅读 · 0 评论 -
python大数据之随机森林(回归与分类)
随机森林在大数据运用中非常的常见,它在预测和回归上相比于SVM,多元线性回归,逻辑回归,多项式回归这些,有着比较好的鲁棒性。随机森林是一个用随机方式建立的,包含多个决策树的分类器。其输出的类别是由各个树输出的类别的众数而定。废话不多说,直接上干货。原创 2022-10-12 17:43:27 · 18274 阅读 · 1 评论 -
python大数据之数据清洗
数据决定模型的上限,好的数据或数据处理,对模型的影响是非常大的,同样,对于数据的处理,不同的数据,处理情况也不一样,具体情况如下所示:缺省值处理,异常值处理,样本的数量,,特征的数量:特征筛选,特征的类型(连续,整形,类别)。原创 2022-10-03 17:42:42 · 1547 阅读 · 0 评论 -
python大数据之异常值处理
对于数据异常值处理,我的理解是,这里的异常值不是代表数据出现的异常,而是对于你需要建立的模型来说,处于异常值。比如你需要正太分布的数据,那么一些不符合正太分布,或者离群太远的值,可以更具你的需要去进行删除,这样你的模型效果就会更好原创 2022-10-03 17:38:12 · 7315 阅读 · 0 评论 -
python大数据之数据分割(含k折交叉验证)
在大数据问题中,我们常常需要对数据进行分割,得到X和y的数据,这里我们来详细讲解一下数据分割函数train_test_split,以及用k折交叉验证来分割数据。原创 2022-09-21 16:36:37 · 2006 阅读 · 0 评论 -
python大数据之缺省值处理
一般对数据进行缺省值处理,都是全部的数据,所以这里先不做分割。诸如删除法,临近值填充,中位值填充,众数填充,平均值填充,KNN,回归等方法原创 2022-09-18 14:45:44 · 2031 阅读 · 0 评论 -
python大数据之dataframe常用操作
详细讲解了dataframe的常用操作,包含创建,增删改查,算数运算,逻辑运算,常用聚合函数以及lamda函数的使用等原创 2022-09-15 10:04:38 · 9774 阅读 · 1 评论