
人工智能
文章平均质量分 91
勤奋的知更鸟
我很勤奋
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
PyTorch 与 Spring AI 集成实战
本文介绍了将PyTorch深度学习模型与Java微服务集成的完整流程。通过FastAPI将PyTorch模型部署为REST API服务,Spring AI调用该接口实现问答、分类等功能。具体包括:模型保存与FastAPI服务构建、Spring AI通过RestTemplate访问接口、将模型集成到Tool Calling架构中。实战演示了智能客服情感分析场景,展示了Python模型与Java微服务的协同方案。该方案为企业提供了将AI模型嵌入Java系统的可行路径,实现了深度学习与大语言模型的联合应用。原创 2025-07-11 23:12:23 · 1267 阅读 · 0 评论 -
标准化模型格式ONNX介绍:打通AI模型从训练到部署的环节
摘要:ONNX(Open Neural Network Exchange)作为开放模型格式,解决了AI模型部署中的框架壁垒问题。文章首先介绍了ONNX的核心价值:跨框架兼容、推理性能优化和简化部署流程。然后详细解析了PyTorch模型转换为ONNX格式的实战步骤,包括示例输入准备、模型导出和验证方法。针对Java生态的调用需求,文章提供了通过JNI+ONNX Runtime实现跨语言调用的完整方案,包含C++推理代码编写、动态库编译和Java端调用流原创 2025-07-11 23:02:29 · 1347 阅读 · 0 评论 -
Spring AI 概述与架构设计
摘要: Spring AI是Spring官方推出的AI开发框架,为Java应用提供统一、可扩展的AI能力集成方案。核心模块包括ChatClient(统一模型交互)、PromptTemplate(动态Prompt管理)、Tool API(函数调用)、VectorStore(向量检索)等,支持OpenAI、Azure、HuggingFace等主流模型。通过依赖注入和模块化设计,Spring AI简化了AI功能开发,解决了传统LLM调用中API耦合、Prompt管理混乱等问题。示例展示了如何快速集成GPT-4,凸原创 2025-07-06 11:52:50 · 928 阅读 · 1 评论 -
基于尤瓦尔·赫拉利AI观点的深度解析
随着人工智能(AI)技术的指数级发展,其对人类社会的深远影响已成为全球性的核心议题。本文旨在系统性地梳理并深度解析赫拉利关于AI的核心论点。赫拉利将AI重新定义为“外星智能”(Alien Intelligence)的理论基础,指出了其非人类认知模式与自主进化能力的颠覆性。聚焦于AI所带来的真正风险——并非科幻式的“机器人叛乱”,而是已经渗透入社会各个角落的、由无数狭义AI构成的“AI系统”所带来的系统性风险。赫拉利的观点揭示了AI挑战的本质:它不仅是一个技术问题,更是一个深刻的社会、政治与哲学问题。原创 2025-06-24 20:25:44 · 575 阅读 · 0 评论 -
当AI成为“程序员”,我们真正的价值是什么?
最近,“AI编程”和“一人公司”这两个词几乎刷爆了所有技术圈。AI的浪潮正以前所未有的力量重塑软件开发的全貌。但这股力量,真的足以支撑起一个仅由一人运营的公司吗?本文将深入探讨AI编程的核心能力、它如何为“一人公司”赋能,并为身处变革中心的开发者们提供一份应对未来的生存指南。原创 2025-06-22 19:16:55 · 700 阅读 · 0 评论 -
Word2Vec介绍
Word2Vec是Google在2013年提出的自然语言处理模型,能将词语转换为包含语义信息的向量。相比传统独热编码,Word2Vec生成的密集向量能保留词语间关系,如"猫"和"狗"的相似性。它主要通过CBOW(上下文预测中心词)和Skip-Gram(中心词预测上下文)两种方式进行训练,适用于不同规模数据集。Word2Vec在语义相似性、文本聚类等场景有广泛应用,但也存在静态词向量、上下文不敏感等局限,这些问题在后来的BERT等模型中得到改进。该技术为AI理解语言提供原创 2025-06-17 20:09:10 · 960 阅读 · 0 评论 -
DBSCAN(Density-Based Spatial Clustering of Applications with Noise)基于密度的聚类方法介绍
DBSCAN是一种基于密度的聚类算法,相比K-Means具有三大优势:无需指定簇数、能识别任意形状簇、可自动检测噪声点。其核心思想是通过邻域半径(eps)和最小点数(MinPts)定义簇,将密度相连的点归为一类。算法流程包括标记核心点、扩展簇和识别噪声三个步骤。虽然参数选择需要技巧(如使用K-距离图),但DBSCAN在空间数据聚类、异常检测等场景表现优异。该算法特别适合处理非球形分布且含有噪声的数据,是传统K-Means算法的重要补充。原创 2025-06-15 19:01:14 · 875 阅读 · 0 评论 -
K-Means算法详细解析:从原理到实践
*聚类(Clustering)**是将数据按“相似性”划分为若干组的过程,每组称为一个“簇(Cluster)”。输入:一堆没有标签的数据点。输出:这些点被划分为 K 组,每组内点相似、组与组之间差异大。可以这么理解:老师把学生按身高或成绩分成不同的小组。K-Means 是一种“划分式聚类算法”。将数据划分成 K 个簇,使得同簇样本尽可能相似,不同簇样本尽可能不同。每个簇用一个“质心(Centroid)”表示,质心就是这组数据的平均点。原创 2025-06-15 18:07:31 · 728 阅读 · 0 评论 -
一起来入门深度学习知识体系
如何开始学习这些算法?阶段学习建议入门学线性/逻辑回归,掌握梯度下降原理初级理解前馈神经网络、反向传播、ReLU 等激活函数中级掌握 CNN、RNN、LSTM,能解决图像与序列任务高级学习 Transformer、Attention,进军 NLP 和大模型编程建议先用 PyTorch(简洁易读)或 TensorFlow2.x学深度学习,不难,但需要耐心!你不需要成为数学家,也不需要记住每个公式。你需要的只是好奇心 + 动手实践。原创 2025-06-14 22:44:14 · 1050 阅读 · 0 评论 -
趣解PyTorch:带你从小白到实战的入门指南
PyTorch 真的是目前最简单、好用、灵活的深度学习框架,尤其适合新手和研究人员。你能理解它的基本逻辑,再配合一些数学原理和神经网络结构,基本就能做很多有趣的 AI 项目了。原创 2025-06-14 17:02:39 · 551 阅读 · 0 评论 -
趣解TensorFlow之入门篇
本文是写给零基础小白的 TensorFlow 入门指南,用最通俗的语言带你理解 Tensorflowd的核心概念。通过多个代码示例和实战演练,手把手教你全面掌握 TensorFlow从入门到实战的关键知识点,建议收藏!原创 2025-06-13 22:34:32 · 1144 阅读 · 0 评论 -
深度学习神经网络架构Transformer深刻理解
Encoder 编码器:读懂输入的句子,把每个词变成一个向量,提取出句子中各词之间的关系。Decoder 解码器:根据 Encoder 的输出,逐个生成目标语言的单词。优点说明并行处理不像RNN那样一步步,速度更快全局依赖建模注意力机制可以看全局信息模块化设计每一块都很独立,扩展容易表达能力强多头注意力可以挖掘复杂关系通用性强既能做文本,又能做图像、音频、代码!原创 2025-06-13 21:17:46 · 1263 阅读 · 0 评论 -
深刻理解深度学习的注意力机制Attention
特点说明全局建模可以一次性看全句所有词并行计算不像 RNN 要一个个处理,可以并行聚焦关键自动抓住关键内容易扩展可堆叠、可组合,非常灵活Attention 就是让模型学会“聚焦重点”的机制,就像你看书时自动划重点一样,它能帮助模型更聪明地理解输入数据的结构和语义。原创 2025-06-13 19:13:03 · 930 阅读 · 0 评论 -
AI常用工具指南
本文探讨了AI工具在内容创作领域的框架应用,涵盖文本、图像、视频、音频生成及智能体开发等维度,展示如何通过DeepSeek、Midjourney、阶梦等工具实现创意落地,并展望了AI工具链融合进化趋势,强调其在提升效率、推动创新中的关键作用。原创 2025-06-12 22:30:48 · 1330 阅读 · 0 评论