Sunny
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
67、数据挖掘算法与模型研究
本文深入探讨了三种重要的数据挖掘算法和模型:BRRA算法用于高效挖掘数据库中属性之间的关系;挖掘功能依赖规则的算法用于分析关系数据库中的属性依赖关系;基于云模型的时间序列预测机制则在处理时间序列数据方面具有独特优势。文章通过对比分析、实际应用案例和未来趋势展望,展示了这些算法和模型在数据挖掘领域的重要价值,并提供了选择合适算法的决策参考。原创 2025-07-16 10:14:53 · 23 阅读 · 0 评论 -
66、连续属性离散化与数据库关系挖掘算法研究
本文研究了数据挖掘和机器学习中的两个重要方向:连续属性离散化与数据库关系挖掘。重点分析了基于熵的三种离散化方法(MDLP、Max-m 和 EDA-DB),其中 EDA-DB 方法结合边界点分布,表现更优。此外,介绍了一种基于相关矩形的关系挖掘算法 BRRA,能够高效生成紧凑的 If-Then 规则集。实验结果表明这些方法在多个数据集上具有良好的性能,并为未来的研究提供了理论支持和应用方向。原创 2025-07-15 14:22:24 · 17 阅读 · 0 评论 -
65、机器学习中的动态偏差选择与连续属性离散化
本文探讨了动态偏差选择与连续属性离散化在机器学习预测规则发现中的应用。通过分析数据集的依赖度,D3BiS方法能够动态选择最优的评估标准、规则表示和离散化策略,从而提升规则发现的效果。同时比较了MDLP和Max-m两种离散化方法在不同训练集规模下的表现,指出各自的优势与适用场景。实验表明,动态偏差选择在多数情况下能接近或达到最佳性能,而离散化方法的选择需根据数据集特点进行调整。原创 2025-07-14 13:51:27 · 14 阅读 · 0 评论 -
64、数据挖掘中的概念差异发现、缺失值估计与预测规则挖掘
本文探讨了数据挖掘中的三个重要主题:概念差异发现、缺失值估计和预测规则挖掘。提出了一种基于多结构决策树的方法,用于改进从案例中发现人们之间概念差异的性能;介绍了一种新的属性树方法来处理训练和测试数据中的缺失值,并通过实验验证其有效性;提出了基于动态偏差选择的预测规则发现算法D3BiS,能够根据不同的任务需求动态调整偏差以发现最优预测规则。文章还对这些方法的应用场景、优缺点进行了对比分析,并给出了实际应用建议与未来展望。原创 2025-07-13 14:32:32 · 14 阅读 · 0 评论 -
63、科学发现中的认知过程逻辑模型与概念差异发现方法
本文探讨了科学发现中认知过程的逻辑特性与建模方法,并提出了基于强相关逻辑的认知模型,以解决经典逻辑在科学推理中的局限性。同时,研究了协作过程中个体之间的概念差异类型及发现方法,提出利用遗传算法生成多样化决策树来增强概念差异发现能力。结合理论分析与实验验证,文章进一步讨论了实际应用中的挑战和未来发展趋势,强调了人工智能技术融合、跨领域拓展以及自动化程度提升的重要性。原创 2025-07-12 16:25:08 · 14 阅读 · 0 评论 -
62、规则关联定量度量分析与科学发现的逻辑模型探讨
本文探讨了规则关联的定量度量分析与科学发现的逻辑模型。在规则关联方面,系统总结了多种度量指标(如 AS、CS、MS、IND 和 D),并将其分类为一般性、单向关联和双向关联三类,同时讨论了它们之间的数学关系及公理化评估方法。在科学发现方面,提出了基于强相关逻辑的认知编程范式,以支持科学发现过程的自动化,并探讨了其未来发展方向。原创 2025-07-11 12:53:54 · 16 阅读 · 0 评论 -
61、事件处理网络中的事件挖掘与规则定量度量分析
本文探讨了事件处理网络中的事件挖掘与规则定量度量分析,重点介绍了事件挖掘的基本特性、事件处理网络(EPN)的结构以及实时模式查询的方法。同时,文章详细阐述了从数据集中提取 if-then 类型规则的过程中,如何通过定量度量来筛选和解释有价值的规则,并提出了多种关键度量指标及其应用方法。最后,总结了事件挖掘和规则定量度量在复杂系统分析和数据处理中的重要性及未来研究方向。原创 2025-07-10 15:01:40 · 13 阅读 · 0 评论 -
60、数据挖掘与智能代理技术在垃圾邮件识别和体育信息提取中的应用
本文探讨了数据挖掘与智能代理技术在垃圾邮件识别、体育信息提取以及事件挖掘中的应用。通过结合三元组分析和多种数据挖掘算法,垃圾邮件识别系统实现了高达97%的准确率;SportsFinder利用表达模式和模糊比较算法有效地从网页中提取体育成绩;事件挖掘系统则通过事件处理代理实现了实时决策支持和系统管理。这些技术的应用展示了其在不同领域中的高效性与可扩展性,并为未来跨领域集成与持续优化提供了方向。原创 2025-07-09 14:48:27 · 11 阅读 · 0 评论 -
59、等式作为部分定义及相关概念解析与垃圾邮件处理研究
本博文围绕等式作为部分定义的语法与解释,深入探讨了分布式自治知识系统(DAKS)中的发现层和操作语义,并结合垃圾邮件处理的实际需求,研究了基于数据挖掘与机器学习的垃圾邮件识别方法。通过引入自动训练和增量学习机制,构建了一个能够不断适应新变化的反垃圾邮件系统,为知识表示、信息过滤与智能识别提供了理论支持和技术实现路径。原创 2025-07-08 12:28:04 · 10 阅读 · 0 评论 -
58、方程发现与共享操作语义探索
本文探讨了方程在数据处理和知识发现中的关键作用,包括其在缺失值计算、预测、属性解释和数据验证等方面的应用。文章介绍了方程的定义与搜索过程,并结合功能性测试方法判断是否值得进行方程查找。同时,讨论了在分布式自治知识系统中方程的共享语义问题,并分析了提升方程发现效率的优化策略,如特征选择、采样和并行计算等。通过实际案例展示了方程发现的具体流程,并展望未来研究方向,如结合机器学习和大数据技术进一步提升方程发现能力。原创 2025-07-07 09:25:44 · 32 阅读 · 0 评论 -
57、分布式数据挖掘中的知识探索与分布式自治数据库的方程发现
本文探讨了分布式数据挖掘中的知识探索方法(KP 方法)以及分布式自治数据库中方程的发现与共享操作语义。在 KP 方法中,通过实验比较了分布式和顺序学习方法的效果,结果表明分布式方法生成的模型准确率与顺序方法相当,且探测树相对较小。针对分布式自治数据库,研究提出利用共享操作语义解决属性缺失导致的查询问题,通过自动化发现属性定义实现数据库之间的知识交换。原创 2025-07-06 10:22:25 · 8 阅读 · 0 评论 -
56、分布式数据挖掘中的知识探索与图数据知识发现
本文探讨了在分布式数据挖掘和图数据知识发现中的前沿技术。重点介绍了图数据知识发现系统KD-FGS,包括其基本概念、替换操作、可反驳归纳推理算法及实验结果,并分析了分布式数据挖掘中知识探索框架的原理与优势。通过结合这两种方法,为未来的大规模数据挖掘提供了理论支持与实践指导。原创 2025-07-05 16:58:40 · 13 阅读 · 0 评论 -
55、因果模型与知识发现系统研究
本文探讨了线性因果模型及其在知识发现系统中的应用。重点分析了因果模型的表示方法、贝叶斯评分指标(如BGe和MML)、结构先验对模型学习的影响,以及基于遗传算法的模型发现方法。通过实验比较不同组合方法在KL距离和预测性能上的表现,揭示了P1和P2先验分别适用于分布拟合与因果关系预测的特性。同时,介绍了知识发现系统KD-FGS,其基于形式图系统实现假设生成与验证,为因果建模提供了实用工具。最后讨论了未来研究方向,包括改进评估指标、优化知识发现系统及跨领域应用拓展等。原创 2025-07-04 14:51:23 · 24 阅读 · 0 评论 -
54、图结构数据的购物篮分析
本文介绍了一种基于图结构数据的购物篮分析方法,用于挖掘频繁图结构及其之间的关联规则。通过数据预处理将图结构转换为项集形式的交易,并利用改进的关联规则推导方法过滤冗余规则,提取代表性关联规则。在模拟路径数组和实际WWW浏览历史数据上的实验验证了该方法的有效性和实用性。文章还讨论了当前方法的局限性,并提出了未来可能的扩展方向。原创 2025-07-03 09:34:01 · 12 阅读 · 0 评论 -
53、高效图算法在知识发现与维护中的应用及图结构数据的篮分析
本文探讨了基于图的高效算法在知识发现与维护中的应用,特别是针对大型项集的发现与更新问题。同时介绍了如何将传统篮分析方法应用于图结构数据,从而挖掘频繁子图模式和关联规则。通过实验结果展示了DIUP和DDUP算法在处理数据库更新操作时相较于传统方法的显著性能优势。此外,文章还分析了图结构数据篮分析的优势、挑战以及未来发展方向,并结合实际案例说明其应用价值。原创 2025-07-02 15:09:24 · 12 阅读 · 0 评论 -
52、高效图算法在大型数据库知识发现与维护中的应用
本文介绍了基于图的高效算法DLG*在大型数据库中挖掘和维护关联规则的应用。DLG*通过记录额外信息显著减少了生成候选项集的数量,提高了挖掘效率。同时,DIUP和DDUP算法能够高效处理数据库更新时的关联规则维护问题,为知识发现与决策支持提供了有效解决方案。原创 2025-07-01 14:34:15 · 10 阅读 · 0 评论 -
51、基于最小消息长度原则的最小因果模型学习
本文探讨了基于最小消息长度(MML)原则的最小因果模型学习方法。文章介绍了等价模型、等价类、一致性和最小模型的基本概念,并详细描述了MML归纳算法的步骤,包括描述和编码因果模型、最小化成本以及搜索因果模型。通过理论分析和实验验证,证明了MML归纳方法能够从数据集中发现既与数据一致又更简单、表达能力更弱的因果模型,即最小模型。实验结果涵盖了人工模型和真实模型的测试,支持MML方法的有效性。原创 2025-06-30 11:42:10 · 10 阅读 · 0 评论 -
50、数据可视化系统与最小因果模型学习
本文介绍了数据可视化系统的结构、特点及其多种可视化算法,包括单个属性、进化与附加属性、分类、属性关联和层次概念的可视化方法。该系统采用动态技术与滑块交互,支持高维数据的可视化渲染,并已应用于加拿大统计数据集。同时,文章探讨了最小因果模型学习的重要性,验证了MML归纳方法在推导最小因果模型中的有效性,并提出了可视化系统与因果模型学习结合的应用案例及未来发展方向。原创 2025-06-29 10:37:39 · 12 阅读 · 0 评论 -
49、数据挖掘中的关联规则可视化与分析
本文介绍了一个基于可视化技术的关联规则分析系统,以及DVIZ数据挖掘可视化系统。通过符合规则和意外规则的发现与可视化,用户可以更直观地理解数据中的潜在模式。系统不仅支持教育统计数据等领域的应用,还具备高度的灵活性与可扩展性,为数据分析提供了重要的技术支持。原创 2025-06-28 14:52:30 · 9 阅读 · 0 评论 -
48、可视化辅助探索有趣的关联规则
本文提出了一种结合趣味性分析与可视化组件的交互式系统,用于高效探索和发现有趣的关联规则。系统通过用户输入的现有知识(如一般印象、合理精确概念和精确知识),对关联规则进行匹配分析并分类为符合规则、意外结果规则、意外条件规则和双侧意外规则。可视化组件则通过分类展示、趣味性程度可视化和有趣项目突出显示,帮助用户快速识别真正有趣的规则。系统支持迭代操作,用户可不断调整知识以优化探索过程,适用于从大量关联规则中挖掘有价值信息的场景。原创 2025-06-27 11:33:45 · 9 阅读 · 0 评论 -
47、机器学习算法在处理缺失值和混合数据上的性能研究
本博文围绕机器学习算法在处理缺失值和混合数据上的性能展开研究。首先比较了四种委员会学习算法(Boosting、Bagging、Sasc 和 SascMB)与C4.5在处理测试数据中缺失属性值的误差表现,发现SascMB具有最佳的缺失值容忍能力。其次,探讨了一种基于混合相似性度量(MSM)的分类方法,并通过实验分析其在不同属性类型数据库中的适用性。最后,将MSM引入k-均值算法,扩展其对混合数据的处理能力,并验证了该方法在多个数据集上的聚类效果。研究总结了各算法的优劣特性,并提出了未来改进的方向。原创 2025-06-26 14:37:24 · 11 阅读 · 0 评论 -
46、医疗数据分类算法优化与缺失值处理研究
本文探讨了医疗数据分类算法的优化与缺失值处理的相关研究。首先,通过优化最近邻算法(NN)中的距离度量,显著提高了患者分类的准确率,尤其是结合互信息法、遗传算法和模拟退火算法后效果更佳。其次,研究了四种委员会学习技术(Bagging、Boosting、Sasc、SascMB)在处理测试数据中缺失值的鲁棒性,结果显示这些方法均优于传统的C4.5算法,其中SascMB表现最佳。文章还分析了不同算法的优缺点,并讨论了实际应用中的考虑因素及未来研究方向,为医疗数据挖掘提供了有效的技术支持。原创 2025-06-25 14:57:58 · 14 阅读 · 0 评论 -
45、高效聚类算法:提升性能与识别异常值
本文介绍了一种高效的k-means聚类优化算法和一种用于识别异常值及剩余簇的两阶段聚类算法。高效空间划分算法通过剪枝策略显著减少了距离计算次数,提高了聚类性能一到两个数量级;而两阶段算法结合了修改后的k-means与簇合并过程,能够快速识别数据中的异常值和特殊簇。文章还对两种算法进行了综合分析,并探讨了其在医学、网络安全和金融等领域的实际应用前景。原创 2025-06-24 16:38:39 · 11 阅读 · 0 评论 -
44、在线分类与K-Means聚类算法优化
本文探讨了两种不同领域的算法优化方案:在线分类的DBPredictor算法和K-Means聚类的新算法。DBPredictor算法结合SQL数据库,通过规则细化策略,实现了高效的在线分类任务处理,并在连续属性数据集上表现出良好的通用性。而针对K-Means聚类算法计算成本高的问题,新提出的优化算法利用空间划分与修剪策略,在保证聚类质量的前提下显著降低了计算复杂度,尤其适用于大型数据集。实证结果显示,这两种算法在各自领域内均具有明显优势,未来可进一步拓展其应用至金融、图像识别、医疗诊断等多个实际场景。原创 2025-06-23 11:45:40 · 17 阅读 · 0 评论 -
43、大型数据库中基于密度聚类的快速算法与在线分类算法解析
本文解析了两种针对大型数据库的高效数据处理算法:FDC(Fast Density-based Clustering)和DBPredictor。FDC是一种基于密度的快速聚类算法,通过等价ID标记、边界点识别以及跨聚类操作,实现比传统DBSCAN更高效的性能,在大规模数据集上展现出线性复杂度和优异的扩展能力。DBPredictor则是一种适用于实时在线分类任务的懒惰模型基算法,其核心在于数值属性的局部离散化与SQL数据库的紧密集成,能够在无需全局预处理的前提下完成对单个事件的快速分类。文章还对两种算法的性能进原创 2025-06-22 09:24:51 · 9 阅读 · 0 评论 -
42、大规模数据库中基于密度聚类的快速算法
本文介绍了一种针对大规模数据库的快速密度聚类算法——FDC。该算法基于新的‘密度相连’概念,解决了传统密度聚类定义中的矛盾问题,并通过k-d树和基于单元的方法实现高效计算。FDC采用多阶段策略,包括局部聚类和跨边界搜索,显著提升了聚类效率和噪声处理能力。实验表明,FDC在聚类质量与运行时间上均优于DBSCAN,适用于图像识别、社交网络分析、金融风险评估等实际应用场景。原创 2025-06-21 12:21:28 · 9 阅读 · 0 评论 -
41、大规模地理参考数据集的鲁棒聚类与高效密度聚类算法
本文探讨了大规模地理参考数据集中的鲁棒聚类与高效密度聚类算法。重点分析了几种主流聚类方法(如DBSCAN、STING、构建树状图等)的优缺点,并引入了一种新的高效密度聚类算法FDC,其具有线性复杂度,适用于大规模数据库场景。文章还介绍了如何基于Delaunay三角剖分确定聚类数量k值,并通过总结和mermaid流程图帮助用户根据数据特点选择合适的聚类算法。原创 2025-06-20 09:05:54 · 11 阅读 · 0 评论 -
40、数据挖掘中的分类与聚类方法研究
本博客主要探讨了数据挖掘中的分类与聚类方法,重点介绍了基于云模型的急性腹痛分类知识挖掘以及大规模地理参考数据集的稳健聚类方法。在分类部分,对比了云模型方法、C4.5 方法和专家诊断的效果,分析了云模型在不同数据规模下的优劣势。在聚类部分,提出了一种改进的基于中心点的聚类算法,结合接近度和密度信息,有效降低了时间复杂度并提升了聚类效果。博客还对两种方法的适用场景、实际应用考量及未来发展方向进行了深入分析,旨在为不同数据挖掘任务提供合适的方法选择参考。原创 2025-06-19 09:19:00 · 9 阅读 · 0 评论 -
38、凸包在概念归纳中的应用与评估
本文探讨了凸包在概念归纳中的应用与评估,比较了CH1和C4.5等分类器在不同数据集上的性能表现。研究表明,CH1在弯曲或非轴正交决策面的数据集上具有更优的分类准确性,尤其在低至中等数据密度下表现突出。同时,CH1诱导的概念结构数量接近实际概念数,具有较少的几何偏向和更好的表示经济性。然而,CH1需要更多数据支持,并且在某些SAP偏向数据集中表现不如其他分类器。原创 2025-06-17 10:34:51 · 11 阅读 · 0 评论 -
37、朴素贝叶斯分类与凸包概念归纳的性能提升研究
本文探讨了提升朴素贝叶斯分类与凸包概念归纳两种分类学习方法的研究。首先分析了在朴素贝叶斯分类中引入树结构后通过提升技术提高分类准确性的实验结果,并讨论了其挑战和性能变化。接着介绍了凸包概念归纳的原理、优势及CH1算法实现,分析了其在分类学习中的特点和适用领域。最后对两种方法进行了对比,提出了可能的结合方式及应用案例,并展望了未来的发展方向。原创 2025-06-16 14:23:10 · 10 阅读 · 0 评论 -
36、提升朴素贝叶斯分类性能的研究
本研究探讨了提升技术在朴素贝叶斯分类中的应用及其性能优化。实验表明,传统的提升技术对朴素贝叶斯分类的改进有限,主要由于其在某些领域的最优性以及对训练数据变化的稳定性。为改善这一问题,研究引入了分层朴素贝叶斯树结构(Lnbt),通过增加分类器的不稳定性,使得提升技术能够更有效地发挥作用。实验结果显示,结合树结构后,提升朴素贝叶斯分类器的错误率显著降低,并优于普通朴素贝叶斯分类器。此外,还分析了该方法的优势及未来可能的研究方向,为实际的数据挖掘和机器学习应用提供了新的思路。原创 2025-06-15 10:34:54 · 10 阅读 · 0 评论 -
34、人类发展数据库可持续性知识挖掘与波纹下降规则默认知识研究
本文探讨了从人类发展数据库(HDD)中挖掘可持续性知识的方法,以及波纹下降规则(RDR)方法中默认知识的研究。通过引入领域知识改进区分矩阵(DM),实现了对HDD数据的有效属性约简,并构建了可持续发展指标(SDI)体系,用于评估各国在社会、经济和环境方面的可持续性状况。同时,研究了RDR方法中默认知识的选择对知识库性能的影响,发现最佳默认知识能够提升系统对噪声数据的抵抗能力。研究成果为可持续性评估和知识系统构建提供了新的思路和工具,并展望了未来在多数据源融合、政策制定支持及多知识源处理等方面的应用与发展。原创 2025-06-13 09:11:48 · 9 阅读 · 0 评论 -
33、模糊逻辑编程与粗糙集模型在规则发现和可持续性知识挖掘中的应用
本文探讨了模糊逻辑编程与粗糙集模型在规则发现和可持续性知识挖掘中的应用。介绍了基于模糊逻辑的归纳算法FCI如何通过语言修饰词提升规则表达的灵活性,并在分类准确性上优于其他算法;提出了基于粗糙集模型的方法处理数据库中的缺失值,通过地面均值、下限和上限估计策略提升规则归纳的准确性;并利用粗糙集理论从人类发展数据库中挖掘可持续性知识,开发出更全面直观的可持续发展指标(SDI)。这些方法在建筑评估、医疗诊断和国家可持续发展评估中展现了良好的应用效果。原创 2025-06-12 09:30:13 · 12 阅读 · 0 评论 -
32、数据挖掘中的模式发现与处理技术解析
本文深入解析了数据挖掘中的多种模式发现与处理技术,重点分析了CPDN在不同数据关系下的模式处理能力、金融领域语言模式挖掘的挑战与解决方案、基于模糊逻辑编程的归纳算法以及这些技术之间的协同作用。此外,还探讨了技术的发展趋势与实际应用案例,为复杂数据分析和预测提供了全面的技术支持。原创 2025-06-11 11:24:59 · 16 阅读 · 0 评论 -
31、神经网络在信息处理与模式检测中的应用探索
本文深入探讨了两种神经网络模型——VSF 网络和混沌模式发现网络(CPDN)在信息处理与模式检测中的应用。VSF 网络作为一种混合神经网络,擅长情境信息表达与知识重建,在路径规划等任务中表现出色;而 CPDN 网络基于径向基函数结构,能够有效发现数据库中的复杂混沌模式,具有良好的预测能力。文章通过实验验证了两者的性能,并展望了它们在未来多个领域的发展潜力。原创 2025-06-10 11:52:18 · 16 阅读 · 0 评论 -
30、神经网络分类器与组合神经网络模型精度调优
本文介绍了基于覆盖删除算法和前馈传播算法的神经网络分类器,以及组合神经网络模型(CNM)的设计与精度调优方法。通过构造性算法解决传统神经网络收敛性差、学习复杂度高的问题,并引入覆盖删除算法优化隐藏节点数量。同时,针对CNM的传统修剪方法在分类精度上的不足,提出一种基于包装器方法的精度调优模型,提升分类性能。模拟结果表明,所提方法在多个分类任务中具有优异表现。原创 2025-06-09 10:56:47 · 13 阅读 · 0 评论 -
29、自组织映射自动标注与大规模数据神经网络分类器
本文介绍了自组织映射(SOM)的自动标注方法LabelSOM以及基于M-P神经模型的神经网络分类器构造算法。LabelSOM通过为SOM节点分配标签,提升聚类分析和数据结构理解的能力,适用于数字图书馆和文本数据挖掘等领域;而神经网络分类器构造算法利用几何解释降低学习复杂性,有效应对大规模数据分类挑战。文章结合案例和技术对比,展示了两种方法的优势及未来发展方向。原创 2025-06-08 09:50:29 · 11 阅读 · 0 评论 -
28、粗糙集与自组织映射的相关研究
本博客主要探讨了粗糙集理论中的可分辨系统与属性约简概念,并介绍了决策表相对约简集的增量算法ASRAI。同时,研究了自组织映射(SOM)在数据聚类分析中的应用及其解释性问题,提出了LabelSOM方法用于自动标注SOM节点,从而提升数据理解和知识发现能力。通过理论分析、算法实现和示例说明,展示了这些方法在结构化数据和文本挖掘中的实际价值。原创 2025-06-07 15:24:50 · 7 阅读 · 0 评论 -
27、医学知识自动化获取与粗糙集可分辨系统研究
本文探讨了医学知识自动化获取和粗糙集可分辨系统的相关研究。在医学领域,通过实验评估了多种知识获取方法的性能,发现基于覆盖度的方法能够生成与专家规则相似的规则。同时,详细介绍了粗糙集理论中的信息系统、不可分辨关系、正区域、相对约简等基本概念,并引入可分辨系统的定义及其性质,提出了用于计算约简的算法以及适用于动态数据库的增量约简算法 ASRAI。通过案例分析展示了可分辨系统的构建与约简过程。研究表明,这些方法在医学数据处理和知识发现中具有广泛应用前景。原创 2025-06-06 13:13:32 · 10 阅读 · 0 评论 -
26、基于粗糙集和粗糙包含的可信规则自动发现
本文探讨了基于粗糙集和粗糙包含的可信规则自动发现方法,旨在解决传统规则归纳方法无法准确反映专家决策过程的问题。通过引入分类准确率、覆盖率以及粗糙包含度量,提出了一种新的三步骤规则诱导方法,并结合粒度模糊划分的思想,为提升规则的可解释性和性能提供了思路。实验结果表明,该方法在医学数据库上优于现有规则归纳方法,且更贴近医学专家的知识获取机制。原创 2025-06-05 14:35:26 · 8 阅读 · 0 评论