62、规则关联定量度量分析与科学发现的逻辑模型探讨

规则关联定量度量分析与科学发现的逻辑模型探讨

规则关联定量度量分析

在规则关联的研究中,有一系列重要的定量度量指标。这些指标可以用以下公式表示:
- (AS(H|E) = \frac{G(H ∧E)}{G(E)})
- (CS(H|E) = \frac{G(H ∧E) - G(H)G(E)}{G(E)})
- (MS(E, H) = \frac{G(E ∧H)}{G(E ∨H)})
- (IND(E, H) = \frac{G(E ∧H)}{G(E)G(H)})
- (D(H, E) = G(H ∧E) - G(H)G(E))

从这些定义出发,还能建立起如下关系:
- (G(E) = AS(E|U))
- (CS(H|E) = (IND(E, H) - 1)G(H))
- (AS(H|E) = \frac{G(H)}{G(E)} AS(E|H))
- (MS(E, H) = \frac{1}{\frac{1}{AS(E|H)} + \frac{1}{AS(H|E)} - 1})
- (D(H, E) = CS(H|E)G(E))

这些度量指标大致可分为三类:
|类别|度量指标|
| ---- | ---- |
|一般性|G|
|单向关联(单蕴含)|AS, CS|
|双向关联(双蕴含)|MS, IND, D|

每种关联度量又可进一步分为绝对支持和支持变化。绝对单向支持的度量是 AS,绝对双向支持的度量是 MS。支持变化的度量中,单向的是 CS,双向的是 IND 和 D。值得注意的是,所有支持变化的度量都与 (E ∧

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值