神经网络在信息处理与模式检测中的应用探索
在当今信息爆炸的时代,如何高效地处理和分析复杂信息成为了研究的热点。本文将深入探讨两种神经网络模型——VSF 网络和混沌模式发现网络(CPDN),它们在不同领域展现出了独特的优势和应用前景。
1. VSF 网络:情境信息表达的利器
当系统需要识别周围世界时,对信息进行分割和表达是关键步骤。VSF 网络作为一种用于情境表达的神经网络模型,在这方面表现出色。
1.1 情境表达的关键要素
系统在环境中工作时,会识别周围环境并调整知识,以缩小所需行动与自身行动之间的差距。从环境中提取信息并构建知识是学习的重要部分。从神经网络模型的角度来看,这种信息表达可视为一种动态符号生成,其关键问题包括表达的时机、信息编码的形式以及两者之间的关系。
- 表达时机 :当系统的识别与所需行动之间出现冲突时,被定义为表达的时机。这种冲突成为知识重建的线索,在神经网络模型中,表现为网络输出与教师信号之间的差异。
- 信息编码形式 :表达结果并非外部信息的简单堆砌,而是具有结构的。其结构可归纳为 AND 类型组合和 OR 类型组合两种基本形式。
1.2 VSF 网络的架构与模块
VSF 网络是一种混合神经网络,由 BP 模块和 LF 模块组成。
- BP 模块 :是一个经过反向传播过程训练的分层神经网络,各层的权重可视为基于外部评估的表达结果。
- LF 模块 :类似于玻