数组分为两部分,使得其和相差最小

本文介绍了一种使用动态规划解决数组分割问题的方法,旨在将数组分成两部分,使两部分之和尽可能接近,最终输出这两部分之和的最小差值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【问题】将数组分为两部分,使得两部分的和最接近,返回两部分的差值。例如:

int[] array={1,0,1,7,2,4},分为两部分为{1,0,1,2,4},{7},差值为1。


参考1:《编程之美》第2.18节,不过问题有所不同,2.18节要求长度为2n的数组分为两个长度为n的数组,使得两部分和最接近。

参考2:http://www.tuicool.com/articles/ZF73Af


【思路】动态规划的解法。求得array的和sum,问题转化为:在array中选取若干个元素,使得这些元素的和<=sum/2,且是最接近sum/2的元素集合。

开一个数组:int[][]f=new int[length+1][sum/2+1]

状态方程:f[i][j]=Max(f[i-1][j-array[i]]+array[i],f[i-1][j])

解释:f[i][j]表示array中i个元素的和<=j,且是最接近j的元素集合。f[i-1][j-array[i]]表示array中i-1个元素的和最接近j-array[i],所以f[i][j]应该是[i-1][j-array[i]]+array[i]和f[i-1][j]中最大的那个。有点像0-1背包问题


例题:网易2017春招题:双核处理

https://www.nowcoder.com/test/question/9ba85699e2824bc29166c92561da77fa?pid=4575457&tid=9777401

思路:把数组分为两部分,使得两部分的和相差最小,再求这两部分和的最大值即为题解。

package test;

import java.util.Scanner;
/** 
* @author xiaohao 	
* @date 创建时间:Aug 11, 2017 4:37:52 PM 
* @version 1.0   
*/
public class twoSubArray_MinDiff {

	public static void main(String[] args) {
		// TODO Auto-generated method stub
		Scanner sc = new Scanner (System.in);
		int n=sc.nextInt();
		int a[]=new int [n];
		for(int i=0;i<n;i++)
		{
			a[i]=sc.nextInt()/1024;
		}
		System.out.println(getTwoSubArrayMinDiff(a)*1024);
	}

	public static int getTwoSubArrayMinDiff(int[] arr) {
		// TODO Auto-generated method stub
		int sum=0;
		for(int i=0;i<arr.length;i++)
		{
			sum+=arr[i];
		}
		
		int temp[][]=new int[arr.length+1][sum/2+1];//注意开辟数组的行数列数要多1,是从第1行第1列开始保存数据
		for(int i=0;i<arr.length;i++)
			for(int capacity=1;capacity<=sum/2;capacity++)
			{
				temp[i+1][capacity]=temp[i][capacity];
				if(arr[i]<=capacity && temp[i][capacity-arr[i]] +arr[i]>temp[i][capacity]){
					temp[i+1][capacity]=temp[i][capacity-arr[i]]+arr[i];//可以放,且值比之前要大,则更新
				}
			}
		return Math.max(temp[arr.length][sum/2], sum-temp[arr.length][sum/2]);
	}

}


<think>好的,我现在需要解决用户的问题:设计一个算法来计算数组中最接近的个元素之间的值。也就是找出数组个元素,它们的的绝对值最小。用户提到这类似于最接近点对问题,但这里是一维的情况。我需要先理解问题,然后思考解决方法。 首先,我回想一下用户提供的引用资料。引用[3]提到,这个问题是微软的面试题,有种思路:暴力解法排序后比较相邻元素。暴力解法虽然简单,但时间复杂度是$O(n^2)$,对于大数组效率很低。而排序后比较相邻元素的时间复杂度是$O(n \log n)$,因为排序通常需要这么多时间,然后线性扫描一遍即可。用户需要的是一个高效的算法,所以显然排序法更优。 那具体怎么做呢?比如,给定一个数组,先排序,然后计算每个相邻元素的,记录最小的那个。比如数组是[3, 1, 4, 6, 5],排序后是[1, 3, 4, 5, 6],相邻分别是2, 1, 1, 1,所以最小是1。这样就能得到结果。这应该就是最优解法,因为排序后的数组相邻元素肯定是最接近的候选者。如果数组中存在多个元素之间的最小,比如有个不相邻的元素可能有更小的吗?比如排序后的数组中,如果存在三个元素a, b, c,其中ab的是d,bc的也是d,那么中间是否有其他组合?比如,假设数组是[1,3,4,6]。相邻是2,1,2。最小是1。这时候确实相邻元素给出的最小是正确的。有没有例外的情况? 例如,数组是[10, 20, 30, 25]。排序后是[10,20,25,30]。相邻是10,5,5。所以最小是5,比如2025之间。但如果数组中有更远的元素呢?比如数组是[1, 5, 7, 10],排序后相邻是4,2,3。最小是2。此时,如果中间有没有相邻的更小值?比如57的是2,确实相邻。这说明,在排序后的数组中,最小值必定存在于相邻的个元素之间。因此,只要遍历排序后的数组,比较相邻元素的,就能找到最小值。 那这个算法的正确性如何证明呢?假设存在个元素ab,它们在排序后的数组中不相邻,但它们的更小。那么,在排序后的数组中,ab之间至少存在一个元素c。如果a < c < b,那么ac的或者cb的必然小于或等于ab的。因为如果ac的大于ab的,同时cb的也大于ab的,那么就有c -a > b -a,这不可能,因为c < b。所以,无论c的位置如何,相邻元素的会更小。因此,最小只能在相邻元素中出现。所以排序后比较相邻元素的方法是可行的。 接下来,我需要将这个思路转化为具体的步骤。首先对数组排序,然后初始化最小一个大数,例如第一个个元素的,然后遍历数组,计算每对相邻元素的,并更新最小。最后返回这个最小。 用户提供的引用[3]中的伪代码可能类似这样的步骤。此外,用户提到的引用[1]中提到将问题转化为连续区间的的问题,但在这个问题中,可能不适用,因为该引用处理的是数组元素的等于连续区间的情况,而这里的问题更直接。 现在,我需要考虑如何处理特殊情况,比如数组中只有个元素,或者元素全相同的情况。如果数组长度小于2,可能需要返回0或者报错。如果所有元素相同,那么为0,正确的结果应该返回0。 举个例子,测试一下算法。比如数组是[5, 2, 9, 7],排序后是[2,5,7,9],相邻是3,2,2,所以最小是2。正确。另一个例子是[1,3,6,4,8],排序后是[1,3,4,6,8],是2,1,2,2,所以最小是1,正确。 那代码如何实现呢?例如用Python的话,可以先将数组排序,然后初始化min_diff为一个足够大的值,或者初始化为前个元素的。然后循环从第二个元素开始,计算当前元素一个,并与当前min_diff比较,更新min_diff。 具体代码可能如下: def find_min_diff(arr): if len(arr) < 2: return 0 # 或者抛出异常,视情况而定 arr.sort() min_diff = float('inf') for i in range(1, len(arr)): diff = arr[i] - arr[i-1] if diff < min_diff: min_diff = diff return min_diff 这个代码的时间复杂度主要取决于排序的时间,即$O(n \log n)$,后面的循环是$O(n)$,所以总时间复杂度是$O(n \log n)$。空间复杂度取决于排序算法,Python的sort使用的是TimSort,空间复杂度是$O(n)$,但在原数组上排序的话,可能不需要额外空间?或者可能需要。 用户可能还想知道是否有更优的算法,比如线性时间的算法?但基于比较的排序下限是$O(n \log n)$,所以如果不排序的话,是否有其他方法?比如,使用桶排序的思路,如果数据范围较小的话,可能可以达到线性时间,但这通常需要特定条件。对于通用的情况,排序后相邻比较的方法应该是最优的。 另外,引用[3]中还提到暴力解法,也就是双重循环比较所有可能的元素对,找出最小。这样的时间复杂度是$O(n^2)$,显然对于大数组来说不可行,但对于小规模的数据可能可以接受。 总结一下,最优的算法是先排序,然后比较相邻元素,时间复杂度为$O(n \log n)$。 现在,我需要按照用户的要求,用中文回答,结构清晰,分步骤说明。同时,生成相关问题。在回答中引用提供的参考资料中的相关部分。例如,引用[3]中的内容,说明排序求解的方法。 此外,用户给出的示例中的代码需要用正确的格式,如Python代码块。同时,数学表达式要用$...$或者$$...$$。 现在,我需要组织回答的结构: 1. 问题分析:说明问题要求,即找到数组个元素的最小值。 2. 算法思路:排序后相邻比较,证明正确性。 3. 步骤分解: a. 排序数组 b. 遍历比较相邻元素 c. 记录最小值 4. 时间复杂度分析:排序O(n log n) + 遍历O(n) 5. 代码示例:给出Python代码 6. 引用相关文献,比如引用[3]中的排序解法,引用[1]中的转化思路(可能不适用,但可以提到) 7. 生成相关问题。 同时,需要注意回答中引用的位置,比如在提到排序解法时引用[^3],或者如果其他引用相关的话。 比如,引用[3]指出:“排序求解,将数组中的元素进行排序,求解个数之间的值记录更新。” 所以在回答中可以提到这一点。 现在开始撰写回答: 首先,问题是要找出数组相差最小个元素的。这可以通过排序数组后比较相邻元素来实现。根据引用,排序后的数组中相邻元素的即为可能的最小值。因此,算法步骤如下: 步骤1:对数组进行排序,时间复杂度为$O(n \log n)$。 步骤2:初始化最小值为一个极大值,比如使用第一个相邻对的值。 步骤3:遍历数组,计算每对相邻元素的值,并更新最小值。 步骤4:返回最小值。 代码示例如下: (Python代码块) 引用中的内容需要适当插入,比如在说明排序方法时引用[^3]。 接下来,可能还需要考虑是否有其他情况,比如数组中存在重复元素,但排序后相邻比较的方法已经处理了这种情况。 例如,引用中提到暴力解法排序解法,而这里采用排序解法更优。 最后,生成相关问题,比如关于算法的时间复杂度、是否有其他方法,或者相关问题如二维的最接近点对问题(引用[^2])。</think>### 问题分析 寻找数组中最接近的个元素的值,等价于在排序后数组中寻找相邻元素的最小值。此问题可转化为排序后线性扫描的优化问题。 ### 算法思路 1. **排序数组**:将数组升序排列,使相邻元素为潜在的最小值候选。 2. **遍历比较**:计算每对相邻元素的值,记录最小值。 3. **正确性证明**:若存在非相邻元素值更小,则它们之间必有更小的相邻值,因此只需检查相邻元素[^3]。 ### 算法步骤 1. **排序**:使用高效排序算法(如快速排序、归并排序)对数组排序。 2. **初始化**:设最小值为无穷大(如`float('inf')`)。 3. **遍历更新**:从第二个元素开始,计算与前一个元素的值,更新最小值。 4. **返回结果**:最终的最小值即为答案。 ### 时间复杂度 - 排序时间复杂度:$O(n \log n)$ - 线性扫描时间复杂度:$O(n)$ - **总时间复杂度**:$O(n \log n)$ ### 代码示例 ```python def find_min_diff(arr): if len(arr) < 2: return 0 # 若数组长度不足,返回0或抛出异常 arr.sort() min_diff = float('inf') for i in range(1, len(arr)): diff = arr[i] - arr[i-1] if diff < min_diff: min_diff = diff return min_diff ``` ### 示例说明 输入数组 `[5, 2, 9, 7]`,排序后为 `[2, 5, 7, 9]`,相邻值依次为 $3, 2, 2$,最小值为 $2$。 ### 算法扩展 若问题转化为“最小绝对值”,需考虑负数情况,但上述算法仍适用,因为排序后相邻元素的绝对值最小性质不变。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值