温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!
温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!
温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!
信息安全/网络安全 大模型、大数据、深度学习领域中科院硕士在读,所有源码均一手开发!
感兴趣的可以先收藏起来,还有大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,希望帮助更多的人
介绍资料
Python知识图谱中华古诗词可视化与情感分析研究
摘要:中华古诗词是中华民族传统文化的瑰宝,蕴含着丰富的历史、文化与情感内涵。随着信息技术的飞速发展,利用Python技术构建中华古诗词知识图谱并进行可视化展示,同时开展情感分析,成为传承和弘扬古诗词文化的重要途径。本文探讨了基于Python的中华古诗词知识图谱构建方法、可视化技术及情感分析的关键技术与应用,通过实验验证,所构建的知识图谱和可视化系统能够直观呈现古诗词的结构与关系,情感分析模型能有效挖掘古诗词的情感倾向,为古诗词的研究、教学与普及提供了有力支持。
关键词:Python;中华古诗词;知识图谱;可视化;情感分析
一、引言
中华古诗词作为中华民族传统文化的核心载体,历经千年沉淀,记录了不同历史时期的社会风貌、人文思想与情感变迁。从《诗经》《楚辞》到唐诗、宋词、元曲,古诗词以其凝练的语言、优美的韵律和深邃的意境,成为中华民族精神文化的重要象征。然而,随着时代的发展,古诗词的传播与传承面临诸多挑战,如传播渠道有限、现代人对古诗词的理解存在障碍等。传统的阅读和教学方式难以满足当代学习者个性化、便捷化的需求,大量古诗词作品被尘封于古籍之中,难以被现代人广泛阅读和欣赏。
现代信息技术的飞速发展为古诗词的数字化处理与传承提供了新的机遇。Python作为一种功能强大且应用广泛的编程语言,在数据处理、自然语言处理、机器学习和可视化等方面具有显著优势。通过构建中华古诗词知识图谱并进行可视化展示,可以直观地呈现古诗词中的实体及其关系,帮助用户更深入地理解古诗词的结构和内涵;情感分析则可以挖掘古诗词中蕴含的情感信息,为古诗词的欣赏、教学和研究提供新的视角。
二、Python在中华古诗词知识图谱构建中的应用
2.1 数据收集与预处理
数据是构建知识图谱的基础。从经典诗词集(如《唐诗三百首》《宋词三百首》)、网络诗词平台(如古诗文网、中华诗词库)等多渠道收集中华古诗词数据。数据内容包括诗词原文、作者信息、创作背景、注释赏析等。对收集到的数据进行清洗、去重、标注等预处理操作,去除噪声数据,如HTML标签、特殊字符等,统一数据格式,确保数据的质量和可用性。利用jieba等分词工具进行分词和去停用词处理,为后续的知识图谱构建和情感分析做准备。例如,在处理《静夜思》时,需去除标点符号,将文本分割为“床前”“明月”“光”“疑是”“地上”“霜”等词汇单元。
2.2 实体识别与关系抽取
实体识别是知识图谱构建的关键步骤。通过自然语言处理技术,使用jieba库对古诗词文本进行分词,识别出诗人、诗作、朝代、意象等实体。例如,利用依存句法分析挖掘“诗人 - 作品”“作品 - 主题”等关系,对于“李白创作了《静夜思》”这一文本,通过依存句法分析可以确定“李白”是主语,“创作了”是谓语,“《静夜思》”是宾语,从而抽取出“诗人 - 作品”关系。关系抽取可以采用规则匹配和基于机器学习的方法。规则匹配方法通过预先定义的关系规则,从文本中抽取实体关系;基于机器学习的方法则利用训练数据集,训练关系分类模型,自动识别实体之间的关系。
2.3 图谱存储
选择合适的图数据库进行知识图谱的存储和查询。Neo4j是一种常用的图数据库,具有高效的查询性能和良好的可扩展性,能够满足知识图谱的存储和查询需求。将识别出的实体和抽取的关系存储在Neo4j图数据库中,定义节点和关系的类型及属性,如诗人节点包含姓名、朝代、生平事迹等属性,诗作节点包含标题、内容、创作时间等属性,关系则包含关系的类型和相关的属性信息,构建完整的中华古诗词知识图谱。
三、中华古诗词可视化技术
3.1 可视化库的选择
常用的可视化库有D3.js、ECharts等。D3.js是一个基于数据驱动文档的JavaScript库,能够创建高度定制化的可视化图表。通过定义节点和边的样式、布局方式等,D3.js可以将知识图谱以直观、交互式的方式展示出来。用户可以通过鼠标操作,如点击、拖动等,查看节点和边的详细信息,深入了解古诗词的结构和关系。ECharts提供了丰富的可视化图表类型和交互功能,方便用户进行数据探索和分析。在古诗词知识图谱可视化中,ECharts可以结合力导向布局、圆形布局等方式展示不同节点和关系,支持交互式查询和分析。
3.2 可视化方案的设计与实现
设计多种可视化方案,展示古诗词知识图谱中的信息。例如,使用NetworkX绘制作者关系网络图,展示作者之间的创作关联;使用Pyecharts绘制意象词云图和诗词主题分布图,直观呈现古诗词中的高频意象和主题分布情况。以意象词云图为例,通过统计古诗词中各个意象出现的频率,将高频意象以较大的字体显示在词云图中,低频意象以较小的字体显示,使用不同的颜色区分不同的意象类别,使用户能够快速了解古诗词中常用的意象及其分布情况。
3.3 可视化系统的开发
使用Python的Web开发框架(如Flask或Django),搭建一个基于Web的古诗词可视化系统。在系统中实现用户登录、古诗词查询、可视化结果展示等功能,方便用户通过浏览器访问和使用系统。将可视化结果嵌入到Web页面中,通过HTML、CSS和JavaScript技术实现页面的布局和交互效果。例如,用户可以在系统中输入诗人姓名、朝代、主题等关键词进行查询,系统根据查询条件在知识图谱中检索相关信息,并将检索结果以可视化的方式展示给用户,用户可以通过点击节点查看详细信息,如诗人的生平事迹、诗作的原文和赏析等。
四、中华古诗词情感分析技术
4.1 基于词典的方法
构建专门针对古诗词的情感词典,对古诗词中的情感词汇进行标注和分类,然后根据词汇的情感极性计算整首诗词的情感倾向。情感词典的构建需要综合考虑古诗词的语言特点和情感表达方式,对通用情感词典进行扩展和优化。例如,添加具有古诗词特色的情感词汇及其情感极性,如“孤雁”象征孤独,“明月”在不同语境下可能象征思念或团圆等。通过统计诗词中情感词汇的情感极性得分,计算整首诗词的情感倾向得分,从而判断诗词的情感类别。
4.2 基于机器学习的方法
选择合适的机器学习算法,如支持向量机(SVM)、朴素贝叶斯(Naive Bayes)等,利用标注好的数据集进行训练,学习古诗词情感分类的特征和模式。标注数据集时,需要邀请诗词学专家对古诗词进行情感标注,确保标注的准确性和可靠性。将古诗词文本转换为计算机可以处理的特征向量,如词袋模型、TF - IDF等,作为机器学习模型的输入。通过训练模型,使其能够根据输入的特征向量预测古诗词的情感类别。
4.3 基于深度学习的方法
深度学习模型如长短期记忆网络(LSTM)、双向编码器表示(BERT)等,能够更好地捕捉古诗词中的上下文信息和语义关系,提高情感分析的准确性。LSTM模型可以处理序列数据,有效解决传统机器学习方法在处理长序列文本时的梯度消失问题。BERT模型则通过在大规模文本语料上进行预训练,学习到了丰富的语言知识和语义表示,在情感分析任务中表现出色。利用大量的标注数据对深度学习模型进行训练,通过反向传播算法调整模型参数,使模型能够学习到情感特征。例如,使用BERT模型对古诗词进行微调,将古诗词文本输入到BERT模型中,获取诗词的句向量表示,然后将句向量输入到分类层进行情感分类。
五、实验验证与结果分析
5.1 实验数据集
从《全唐诗》《全宋词》及古诗文网等渠道收集古诗词数据,构建实验数据集。数据集包含诗词原文、作者信息、朝代、情感标注等信息。邀请诗词学专家对部分古诗词进行情感标注,构建标注数据集,用于训练和评估情感分析模型。同时,收集未标注的古诗词数据,用于知识图谱的构建和扩展。
5.2 实验结果
通过实验验证,所构建的中华古诗词知识图谱能够准确地表示古诗词领域的知识,包含丰富的实体、属性和关系信息。可视化系统能够以直观、交互式的方式展示知识图谱中的信息,用户可以通过简单的操作快速获取所需的信息,提高了信息获取的效率和准确性。在情感分析方面,基于深度学习模型的情感分析方法取得了较好的性能,准确率达到了较高水平。例如,使用BERT模型进行情感分类,在测试集上的准确率达到了85%以上,能够有效地挖掘古诗词中的情感倾向。
5.3 结果分析
实验结果表明,Python技术在中华古诗词知识图谱构建、可视化和情感分析方面具有显著优势。知识图谱的构建能够整合古诗词中的多维度信息,为可视化展示和情感分析提供基础支持。可视化技术能够将抽象的知识以直观的图形方式呈现出来,帮助用户更好地理解和分析古诗词。情感分析方法能够挖掘古诗词中蕴含的情感信息,为古诗词的欣赏、教学和研究提供新的视角。然而,实验中也发现了一些问题,如古诗词文本中存在大量的生僻字、古汉语词汇和语法结构,给数据采集和预处理带来了一定的难度;情感分析的准确率还有待进一步提高,特别是在处理复杂情感和隐喻表达方面。
六、结论与展望
6.1 结论
本文探讨了基于Python的中华古诗词知识图谱构建方法、可视化技术及情感分析的关键技术与应用。通过实验验证,所构建的知识图谱和可视化系统能够直观呈现古诗词的结构与关系,情感分析模型能有效挖掘古诗词的情感倾向。该研究为古诗词的研究、教学与普及提供了有力支持,有助于传承和弘扬中华优秀传统文化。
6.2 展望
未来的研究可以进一步拓展以下几个方面:一是加强多模态数据融合,将古诗词的文本、图像、音频等多模态数据进行融合,构建更丰富的知识表示,提高可视化和情感分析的效果;二是探索更先进的情感分析方法,结合知识图谱和深度学习技术,提高情感分析的准确性和泛化能力,特别是对复杂情感和隐喻表达的处理能力;三是开发更多的应用场景,如古诗词智能问答系统、古诗词推荐系统等,为用户提供更加个性化的服务,促进古诗词的传播和传承。
参考文献
- 计算机毕业设计Python知识图谱中华古诗词可视化 古诗词情感分析 古诗词智能问答系统 AI大模型自动写诗 大数据毕业设计(源码+LW文档+PPT+讲解)
- 论文速览 | 基于情感知识图谱的中文情感分析
- 唐诗分析:数据可视化技术的应用与价值
运行截图
推荐项目
上万套Java、Python、大数据、机器学习、深度学习等高级选题(源码+lw+部署文档+讲解等)
项目案例
优势
1-项目均为博主学习开发自研,适合新手入门和学习使用
2-所有源码均一手开发,不是模版!不容易跟班里人重复!
🍅✌感兴趣的可以先收藏起来,点赞关注不迷路,想学习更多项目可以查看主页,大家在毕设选题,项目代码以及论文编写等相关问题都可以给我留言咨询,希望可以帮助同学们顺利毕业!🍅✌
源码获取方式
🍅由于篇幅限制,获取完整文章或源码、代做项目的,拉到文章底部即可看到个人联系方式。🍅
点赞、收藏、关注,不迷路,下方查看👇🏻获取联系方式👇🏻