
小样本学习
文章平均质量分 94
Sophia$
算法
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Matching Networks for One Shot Learning代码思路解读
目录 1.代码中所有Classes和类之间的调用关系 2. 代码思路解析 2.1 代码的入口 2.2 数据读取 2.2.1 读取train,evaluation和test图片至变量data中。 2.2.2 设计one shot learning的学习过程 2.2.3 真实数据的one shot learning过程 3. 代码思路的图形表示 1.代码中所有Classes和类之间的调用关系 如下: 表1 代码中所有class和调用关系 类 调用类 再调用类 所在文..原创 2021-04-28 16:38:47 · 487 阅读 · 0 评论 -
Few-shot learning
1. 前言 Few-shot Learning顾名思义就是用很少的样本去做分类或者回归。举个简单的例子:假如现在有一个Support Set只有四张图片,前两张是犰狳(读音:qiú yú),又称“铠鼠”。后面两张是穿山甲,不用在乎太在意是否认识这两种动物,只需要区分这两种动物就行了,从现在开始观察10s,下面有一张测试图。 那么接下来进入测试环节:下面这张图是犰狳还是穿山甲呢?如果不能正常分类,那你基本就告别手表了!看过上面四张图片正常人都能做出正常判断,那么计算机是否能正确分类呢?如果每个训练集只转载 2021-04-07 09:13:02 · 1039 阅读 · 0 评论