
三维视觉
文章平均质量分 86
深蓝学院
深蓝学院(www.shenlanxueyuan.com)是专注于人工智能的在线教育平台,由中科院自动化所毕业博士团队创建。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
ICLR2024佳作:多视图Transformer再次升级,直接感知三维几何信息
本机制或可开发一种能够完全通过观察自主获取此类结构信息的算法,特别是寻求一种类似于人类能力的、适用于各种结构形式的通用学习器。原创 2024-06-07 10:43:06 · 1240 阅读 · 1 评论 -
Apple助力3DGS重大突破!3DGS竟能实现新姿态合成?
3DGS又一大进步:让虚拟人体重建更逼真。原创 2024-05-13 10:12:17 · 1146 阅读 · 0 评论 -
仅用三张图片实现任意场景三维重建:ReconFusion
ReconFusion通过在三维重建过程中加入扩散模型作为先验来减少输入图片数量,利用少量视图信息即可完成高质量场景渲染与重建,为三维重建领域提供了新的研究方向。原创 2024-01-16 14:05:51 · 2527 阅读 · 1 评论 -
多传感器融合:MVP和PointPainting
在当时 3D 物体检测还是以 Lidar-Only 的方式为主,因为融合的算法并不能体现明显的优势,但是很显然,Lidar 的信息有限、检测精度有限。不过我们还是需要有一些思考,虽然这样的方式可以提升性能,但是图像分割不是绝对准确的,如果赋错了怎么办?多传感器融合相关的理论真的可以非常复杂,而在感知方面,由于可以和深度学习做结合,所以很多工作可以变得简单有效,有时候一个简单的特征融合都会有很好的效果。针对Lidar信息有限的问题,解决思路有两个,一个是挖掘更多的信息,但是这条路很难走;原创 2023-02-17 12:27:49 · 433 阅读 · 0 评论 -
ScanContext 论文详解 - 用途:Lidar SLAM 回环检测、空间描述符
Figure 1. 激光雷达沿着方位角(浅蓝)与放射方向(黄)的Bin分割 [1]Figure 2. Scan Context示意图 [1]1Scan Context,从英文字面理解就是“”。类比于我们阅读的时候,需要理解上下文,才能明白其意,LidarSLAM在进行回环检测的时候,也需要将“上下文” (之前的数据)进行比较,方才知道我们是不是又走到了之前的同一个地方()。原创 2022-11-17 15:57:42 · 1588 阅读 · 1 评论 -
基于点线特征的激光雷达+单目视觉里程计
我们在公开的 KITTI训练数据集上测试了我们的方法,该训练数据集包含具有地面真实轨迹的00-10序列,并在64位Linux操作系统的Inte Core [email protected]和8G内存的计算机上分析了方法的精度和时间效率。我们在KITTI数据集序列00(左)和05(右)上的运动跟踪轨迹,分别用我们的完整的系统(*)、没有深度优先模块的系统(-)和没有尺度校正模块的系统(#)与地面真值(GT)轨迹进行比较的结果。本文介绍了一种新颖的使用点和线的激光雷达+单目视觉的里程计方法。原创 2022-11-17 14:35:41 · 471 阅读 · 0 评论 -
『精华文稿』基于NeRF的三维内容生成
基于NeRF的三维内容生成原创 2022-08-12 11:30:35 · 1539 阅读 · 0 评论 -
PlanarSLAM:基于结构化约束的视觉SLAM
在我们所熟知经典SLAM系统,以ORB-SLAM为代表的通过特征点法在相机位姿估计方面有很好的表现,但在一些人为构造的弱纹理环境下,由于缺少可靠的特征点的缘故,导致表现性能下降。针对此种问题,作者通过根据周围环境的几何特征来提升结构化环境下的SLAM追踪和建图准确性。除特征点以外,我们还可以利用结构化环境提供的大量线和面的特征来进行SLAM系统的追踪与建图。在SLAM的追踪模块中,作者对点、线、面做了解耦合的优化处理,同时利用曼哈顿假设对位姿进行优化。对于建图部分,从稀疏到稠密不同等级的地图可以以较低的原创 2021-08-04 11:52:09 · 1672 阅读 · 7 评论 -
三维视觉前沿进展年度报告
三维视觉围绕深度图像获取、视觉定位与制图、三维建模及三维理解等任务而展开。在自动驾驶、机器人、数字城市以及虚拟/混合现实等应用的驱动下,三维视觉受到了广泛的关注。中国图象图形学学会和中国图象图形学报联合重磅发布“图像图形学发展年度报告”综述专刊。百位专家学者倾力之作,发布了15篇学科重要方向综述论文,论文梳理学科发展脉络,并全面展示三维视觉的研究现状-前沿-热点-趋势。内容框架为:论文脉络三维视觉前沿进展1、 国际研究现状立体匹配非端到端立体匹配 端到端立体匹配 无监督.转载 2021-07-17 14:37:48 · 608 阅读 · 0 评论