Ubuntu 20.04配置cuda-toolkit-11-4以及cuDNN一遍过

本文档详细介绍了在Ubuntu20.04上安装CUDA 11.4和cuDNN的步骤,包括检查显卡支持版本、下载安装CUDA工具包、验证安装及安装cuDNN并测试。同时提供了错误处理和国内源配置建议。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


ubuntu截图方法:
加个Ctrl键,截图保存到剪贴板:

Ctrl+PrtSc:截取整个屏幕保存到剪贴板(类似windows全屏幕截图)
Ctrl+Alt+PrtSc:截取当前窗口保存到剪贴板(类似windows窗口截图)
Ctrl+Shift+PrtSc:任意选取矩形区域截图保存到剪贴板(类似windows矩形截图)

一、配置好显卡驱动

按照我之前的这篇博文进行配置:
https://blog.csdn.net/sjjsbsbbs/article/details/123791491

二、cuda-toolkit-11-4

1、观察自己显卡最高支持的版本

打开终端,输入:

nvidia-smi

观察右上角最高支持的版本,后续安装不高于这个版本,我的显卡(3050显卡)最高支持11.6。

2、下载CUDA

可直接去官网下载所需版本:
https://developer.nvidia.com/cuda-toolkit-archive
如果你的显卡支持11.4,也可直接运行下述语句:
下载CUDA:

wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/x86_64/cuda-ubuntu2004.pin
sudo mv cuda-ubuntu2004.pin /etc/apt/preferences.d/cuda-repository-pin-600
wget https://developer.download.nvidia.com/compute/cuda/11.4.0/local_installers/cuda-repo-ubuntu2004-11-4-local_11.4.0-470.42.01-1_amd64.deb
sudo dpkg -i cuda-repo-ubuntu2004-11-4-local_11.4.0-470.42.01-1_amd64.deb
sudo apt-key add /var/cuda-repo-ubuntu2004-11-4-local/7fa2af80.pub
sudo apt-get update

再安装cuda-toolkit

apt-get install -y cuda-toolkit-11-4

测试一下cuda-samples

cd /usr/local/cuda-11.4/samples/4_Finance/BlackScholes
make BlackScholes
./BlackScholes

如果出现下面的结果,代表成功了:

输入nvcc -V,查看版本信息,如果出现11.4或你自己下载的就说明成功了,如果出现的版本不对,那就是nvcc指向不对,需要进行修改,指向自己的CUDA。
执行

cd /usr/bin
vi /usr/bin/nvcc

没有vi就先下载,sudo apt-install vim
输入i进行修改,中间的cuda-11.4改成自己的版本就行,保存完成后esc退出,最后执行:wq!强制保存,

完成后再次输入:

nvcc -V

如果是自己下载的对应版本说明成功了。

三、安装cuDNN

先去官网进行下载:
https://developer.nvidia.cn/rdp/cudnn-archive
需要找到和CUDA对应的版本,要下载三个deb文件:

点击对应的xxx for CUDA11.4,然后会出现如下的列表:

下载这三个:

下载好后会保存在本地的Dowload文件夹,cd到这个文件夹下,然后依次执行下列代码,输入前面的,按下tab键自动补全:

sudo dpkg -i libcudnn8_+tab键
sudo dpkg -i libcudnn8-dev+tab键
sudo dpkg -i libcudnn8-samples+tab键

接下来执行下述语句:
#复制cuDNN samples到home目录下

cp -r /usr/src/cudnn_samples_v8 /$HOME

#进入home目录

cd $HOME/cudnn_samples_v8/mnistCUDNN/

#编译mnistCUDNN

sudo make clean
sudo make

#运行mnistCUDNN

sudo ./mnistCUDNN

执行

sudo make

#运行mnistCUDNN

sudo ./mnistCUDNN

显示test passed说明安装成功。
但是执行:

sudo make

时候,可能会报错:

1 | #include "FreeImage.h"
  |          ^~~~~~~~~~~~~

此时安装:

sudo apt-get install libfreeimage3 libfreeimage-dev

如果安装不成功,可能是源的问题,则需要配置国内源了。
参考下列博客:
https://blog.csdn.net/weixin_45712255/article/details/108017677
最后重新执行一遍
执行

sudo make

#运行mnistCUDNN

./mnistCUDNN

如果显示test passed说明安装成功。
至此,安装完成

### 安装和配置 nvidia-container-toolkit 的详细指南 #### 添加 NVIDIA 软件包仓库 为了确保能够获取到最新的软件包版本,首先需要添加 NVIDIA 提供的官方生产存储库。以下是具体的操作方法: ```bash curl -fsSL https://nvidia.github.io/libnvidia-container/gpgkey | sudo gpg --dearmor -o /usr/share/keyrings/nvidia-container-toolkit-keyring.gpg \ && curl -s -L https://nvidia.github.io/libnvidia-container/stable/deb/nvidia-container-toolkit.list | \ sed 's#deb https://#deb [signed-by=/usr/share/keyrings/nvidia-container-toolkit-keyring.gpg] https://#g' | \ sudo tee /etc/apt/sources.list.d/nvidia-container-toolkit.list ``` 此命令会下载并导入 GPG 密钥以及创建一个用于管理 `libnvidia-container` 和其他相关组件的 APT 配置文件[^3]。 --- #### 更新本地APT缓存 完成上述步骤之后,更新系统的APT索引以反映新加入的内容: ```bash sudo apt-get update ``` 这一步非常重要,因为它使得后续可以顺利找到并安装所需的最新版本软件包[^2]。 --- #### 安装 nvidia-container-toolkit 及其依赖项 通过APT工具来实际部署必要的驱动支持程序集: ```bash sudo apt-get install -y nvidia-container-toolkit ``` 这条语句将会自动处理所有必需品连同它们之间的相互关系一起被正确设置好位置以便于接下来的工作流程得以继续下去[^1][^2]. --- #### 重启 Docker 服务 最后一步也是至关重要的环节就是重新启动docker守护进程从而让刚才所做的更改生效: ```bash sudo systemctl restart docker ``` 只有当这个动作完成后,Docker daemon才会识别新的插件环境进而允许GPU资源参与到容器化应用当中去工作. 至此整个过程结束,现在应该可以在基于Ubuntu 20.04 LTS操作系统之上成功构建起一套完整的NVIDIA GPU加速计算平台了. --- ### 测试安装是否成功 可以通过运行下面的命令验证一切是否正常运作: ```bash docker run --rm --gpus all nvidia/cuda:11.0-base nvidia-smi ``` 如果没有任何错误消息返回,并且显示出当前系统中的图形处理器状态,则表明安装顺利完成. ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

血狼傲骨

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值