import sklearn
from sklearn.linear_model import LinearRegression
lr = LinearRegression(fit_intercept=True)
lr.fit(cars[["weight"]], cars["mpg"])
predictions = lr.predict(cars[["weight"]])
print(predictions[0:5])
print(cars["mpg"][0:5])
绘制图像
plt.scatter(cars["weight"],cars["mpg"],c="red")
plt.scatter(cars["weight"],predictions,c='blue')
plt.show()
备注:
1)构造数据时,需要将一维数据扩展成二维,方法如下
import numpy as np
# a = np.arange(0, 6)
a = np.array([1, 1, 1, 0, 1, 1])
print(a)
b = a.reshape(6,1)
k = np.pad(b, pad_width=((0, 0), (2, 3)),mode='edge')
print(b)
print(k)
效果:
[1,2,3,4,5,6]
[[1],[2],[3],[4],[5],[6]]