【机器学习】线性回归

import sklearn
from sklearn.linear_model import LinearRegression
lr = LinearRegression(fit_intercept=True)
lr.fit(cars[["weight"]], cars["mpg"])
predictions = lr.predict(cars[["weight"]])
print(predictions[0:5])
print(cars["mpg"][0:5])

绘制图像

plt.scatter(cars["weight"],cars["mpg"],c="red")
plt.scatter(cars["weight"],predictions,c='blue')
plt.show()

备注:

1)构造数据时,需要将一维数据扩展成二维,方法如下

import numpy as np

# a = np.arange(0, 6)
a = np.array([1, 1, 1, 0, 1, 1])
print(a)
b = a.reshape(6,1)

k = np.pad(b, pad_width=((0, 0), (2, 3)),mode='edge')

print(b)

print(k)

效果:

[1,2,3,4,5,6]

[[1],[2],[3],[4],[5],[6]]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值