python安装torch-cluster、torch-scatter、torch-sparse和torch-geometric | torch_geometric详细安装教程

1.检查CUDA版本

【方法1】用nvidia-smi

已装cuda,用nvidia-sminvcc -V 查看
在这里插入图片描述

【方法2】用torch

已装torch,用torch代码打印

import torch
print(torch.__version__)                # 查看pytorch安装的版本号
print(torch.cuda.is_available())        # 查看cuda是否可用。True为可用,即是gpu版本pytorch
print(torch.cuda.get_device_name(0))    # 返回GPU型号
print(torch.cuda.device_count())        # 返回可以用的cuda(GPU)数量,0代表一个
print(torch.version
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

华尔街的幻觉

你的鼓励将是我创作的最大动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值