文章[How Long Should the Forecasting Horizon Be?]将整个库存周期分成以下几个时间:
- 提前期 (L):从你下订单到收到货需要的时间。
- 评审周期 ®:你多久下一次订单(比如每月一次)。
- 风险期 (L+R):这是你库存面临风险的最长时间。在这段时间内,你无法通过新的订单来调整库存,只能依靠现有库存和已下的订单。
举个例子:
假设你每月向供应商订一次货(评审周期是 1 个月),而供应商需要 3 个月才能把货送到(提前期是 3 个月)。那么,你今天下的订单,要到第 4 个月初才能收到。所以,从你下订单到收到货,这中间有 3 个月的等待期(提前期),加上你这个月还要用掉库存(评审期),总共就是 4 个月。
除了风险期 (L+R) 之外,作者建议再多看几个月(比如总共 5 个月甚至更长)。这是为了:
- 评估风险: 了解未来更远的需求,可以帮助你判断当前库存是过多还是过少,避免浪费或缺货。
- 与供应商协作: 提前告知供应商更长期的需求趋势,有助于他们更好地安排生产和备货,甚至可能缩短交货时间或降低成本。
作者Nicolas Vandeput、SupChains技术团队、供应链相关文章还有:
- SupChains技术团队零售产品销量预测建模方案解析(一)
- SupChains技术团队回答:模型准确率提高 10%,业务可以节省多少钱?(二)
- SupChains团队: 衡量Forecast模型结果在供应链团队内的传递质量(三)
- SupChains团队:供应链数据的异常特征管理指南(四)
- SupChains技术团队:需求预测中减少使用分层次预测(五)
- SupChains团队:全局机器学习模型在需求预测中的应用(六)
- VN1 供应链销量预测建模竞赛技巧总结与分享(七)
- SupChains团队:供应链新品预测建模的一些策略(八)
- 供应链团队设置安全库存的五层境界(九)
- 供应链项目中产品的ABC XYZ分类法弊端(十)
- 供应链项目中库存管理与优化指南(十一)
- 端到端供应链优化案例研究:需求预测 + 库存优化(十二)
- SupChains团队:Animalcare公司供应链需求预测模型案例分享(十三)
- 供应链需求预测项目如何设定合理的KPI、准确率指标(十四)
- 供应链项目缺货时如何进行需求预测(十五)
- 供应链项目间歇性、应季性产品的需求预测指南(十六)
- SupChains团队:化学品制造商 ChampionX 供应链需求预测案例分享(十七)
文章目录
1 前言
假设你是一名供应计划员。你的主要供应商给出的提前期是 3 个月,而你每月下一次订单。
从技术上讲,你在当月(这里是 M1)的第一天提交订单。订单接收发生在每月的月初(它们不能用于履行上个月的订单)。换句话说,你会在 M1 的第一天提交订单,并在 M4 的第一天收到货物。
你希望 供应链的需求计划员为你提供支持,提供有用的需求预测。
你应该要求他们关注:
- 预测 M+1?
- 预测 M+2?
- 预测 M+3?
- 预测 M+4?
- 预测 M+1 到 M+3?
- 预测 M+1 到 M+4?
- 预测 M+1 到 M+6?
我在 LinkedIn 上进行了一项民意调查,得到了以下答案:
我同意 38% 的投票者:你应该关注 5 个月(可能略多一些)的预测期。我猜这个答案对许多计划员来说会是反直觉的,因为 34% 的人只对最长 M+3 感兴趣。
为了解释我选择这个预测期(M1 到 M5),我们首先来看看理论,然后用一个例子来说明。
2 理论:库存优化、提前期和评审周期
[库存优化理论] 告诉我们,周期性库存补货策略应该在 L+R(提前期 + 评审周期)的风险期*内受到保护。
*风险期:你需要等待接收订单(来自你的供应商)的最长时间。在此期间,你的库存面临耗尽的风险。在周期性补货策略中,我们有风险期 = 提前期 + 评审周期。
我们之前的例子是 4 个月:3 个月的提前期加上 1 个月的评审周期。
提前期、评审周期和风险期
这个答案对问题来说是反直觉的。大多数供应计划员会关注 M+3 的预测或 M+1 到 M+3 的累计预测,而不是 M+1 到 M+4 的累计预测。
3 模拟案例分析:每月动态库存量
让我们来看一个例子;我们稍后将讨论 M5 和 M6。
假设订单和需求计划如下图所示。即将到来的订单接收用绿色表示,需求预测用红色表示。在下订单时(就在 M1 开始时),我们的库存水平是 150 单位。
订单和需求计划
我们希望在收到新订单之前,每个月结束时的库存水平为 100 单位。通过这种方式定义我们的库存目标,它将与安全库存的定义相对应。
示例。 在 M1 结束时,我们预计库存为 150–50=100 单位(= 期初库存 - 预期需求)。然后我们将收到之前订购的 40 单位,并在 M2 开始时达到 140 单位。
查看下图,我们计算出到 M3 结束时,我们预计剩余库存为 70 件。这比我们 100 单位的目标低 30 件。
提前期为 3 个月,我们现在下的订单 1 在未来 3 个月内不会及时到达以改变任何事情。我们唯一能影响的是 M4 结束时的库存水平。
如下图所示,通过现在订购 80 件,我们将确保 M4 结束时的库存头寸为 100 单位(期初 = 70+80;消耗 = 50;剩余库存 = 100)。
我们现在需要订购 80 单位以达到 M4 结束时的库存目标。
3.1 哪种预测最重要?
查看上图,我们发现改变 M1 到 M4 中任何一个月的预测都会改变我们应该订购的数量。
示例: 如果你的需求计划员更新 M2 预测,将预期需求从 75 件更改为 100 件,你也应该通过增加 25 单位的订单来做出反应。
这意味着 M1 到 M4 的任何时期对于确定你的订单数量都同样重要。
3.2 展望未来
让我们回顾一下目前为止的故事。
我们需要每月向供应商下订单,供应商给出的提前期是 3 个月。我们意识到,为了决定现在订购多少,我们必须关注未来 4 个月的需求预测。
但是,实际上,这并非全貌。
3.2.1 最佳服务水平和风险
库存优化科学告诉我们,我们需要根据 [盈利能力和风险]来优化服务水平。基本上,你需要平衡库存过多和库存不足的风险和成本。
让我们想象两种简单(极端)的情况:
- 场景 1:M5 的预期需求是 1000 件。
- 场景 2:M5 的预期需求是 0 件。
场景 1 和 2(看 M5)
我们最初假设我们希望 M4 结束时有 100 件安全库存。显然,如果我们预计 M4 之后没有销售(场景 2),那么 M4 结束时有 100 件库存并不是一个明智的决定。另一方面,如果我们预计 M5 将销售一千件(场景 1),我们可以为 M4 留出更大的安全边际(因为过时或长期剩余的风险很低)。
3.2.2 协作
通过向你的供应商提供更长期的视图,你可以帮助他们缩短提前期、降低成本并提高库存可用性。
4 优化方向1:概率预测的重要性
在供应链项目中库存管理与优化指南(十一)中,我展示了概率预测比点预测更相关且有用。
- 点预测:将未来与单一预期结果相关联,通常是平均预期值(不要与_最可能_的结果混淆)。示例:我们预计下个月销售 1000 单位。
- 概率预测:为不同事件的发生分配概率。
如果你想正确评估你需要多少库存,你需要获得在此风险期内可能发生情况的概率视图。
基本上,我们应该查看 L+R 期间的需求分布,而不仅仅是 L+R 期间的点预测。
请注意,M1 到 M4 的需求分布通常与 M1、M2、M3 和 M4 的需求分布之和不同。但那是另一个故事了。
5 优化方向2:销售损失与延期交货
有延期交货(所有超出需求都被保留直到有库存)的库存策略与有销售损失(所有超出需求都丢失)的策略不同。
- 销售损失: 当你缺货时,你的客户(通常)会取消订单。你需要注意在风险期内可能发生的任何缺货。因此,你需要详细了解每个单独月份可能发生的情况(除了对整个预测期有良好的预测)。
销售损失:如果 M1 需求增加 150 单位(到 200 件),对订单的影响仅增加 75 单位,因为 M1 和 M2 的超出需求已丢失。
销售损失在 B2C/FMCG 中很常见,这使得需求计划员特别难以 [估计_真实_需求]。
- 延期交货:如果库存短缺,你的客户将保持订单开放并等待库存可用。在这种情况下,如果你在风险期内错过任何库存,对订单要求没有影响:总需求不会受到影响。然后你可以专注于从 M1 到 M4 的累计预测,而不是每个月的单独预测。
延期交货:如果 M1 需求增加 150 单位(到 200 件),对订单的影响是增加 150 单位(80+150=230),因为所有超出需求都已延期交货。
- 混合:在大多数供应链中,一些客户会保持订单开放(或重新订购),而另一些则会转向竞争对手。为了优化你的订单数量,你必须估计在风险期内发生销售损失的可能性。
5 结论
总之,最佳实践是关注风险期(提前期加上评审周期)内的需求预测,再加上几个周期(以了解库存过多/过少的风险并与供应商协作)。