jmeter如何查看TPS、RT指标

压测的时候,我们会经常关注2个重要的指标 TPS 和 RT,TPS 每秒处理的事务数(Transactions per Second),jmeter的Throughput为吞吐量(请求数/秒),TPS=并发数/响应时间;RT 响应时间(Reponse Time),从发起请求到完全接收到应答的时间消耗(平均响应时间)。我们在聚合报告里面能看到最后的测试结果TPS值(Throughput)和RT值(平均响应时间)。如果我们想查看更详细的报告,查看压测过程中不同时间段的每秒事务数,可以使用 Transactions per Second 插件来查看TPS,添加-监听器-jp@gc - Response Times Over Time插件查看RT。

jmeter自带插件不包含jp@gc -Transactions per Second 和jp@gc - Response Times Over Time插件,需要我们先下载Plugins Manager插件管理器后再添加这两个插件即可。

插件管理器Plugins Manager下载,下载地址https://jmeter-plugins.org/install/Install/

Plugins Manager下载

下载插件后把jar包放到 lib/ext 目录,然后重启jmeter。点击“选项”-“Plugins Manager”

查看Plugins Manager

Plugins Manager页面

安装插件

在监听器中添加jp@gc - Transactions per Second和jp@gc - Response Times Over Time

设置线程数5,循环执行100次运行脚本,查看聚合报告吞吐量TPS:54.0/sec,Average平均响应时间RT:86ms

聚和报告

根据公式计算TPS=5/0.086=58.14/sec,计算的结果和吞吐量54/sec很接近;这样理解这个公式,绝对的并发是不存在的,请求发出的时间总有先后,绝对的TPS也是无法计算的,统计的角度看:TPS = 服务器处理请求总数/花费的总时间;我们设置线程组的持续压测时间为5秒,设置线程数5,于是压测的结果TPS值是39.18;根据公式TPS = 总请求数194/总时长5秒,得到的结果是38.8,这样就很接近报告的TPS值了;为了找到服务器的最大TPS值,我们一般设置不同的并发数(线程组)来压测。

持续压测聚和报告

线程持续时间设置

实时TPS

实时RT



 

### 如何在 JMeter 中配置和设置 TPS(每秒事务数) 在 JMeter 中,TPS(Transactions Per Second)是一个重要的性能指标,用于衡量服务器在一秒钟内能够处理多少个事务。为了实现这一目标,通常需要借助特定的插件以及合理配置线程组参数。 #### 插件安装 由于 JMeter 自带的功能并不直接支持 TPS 的计算,因此需要依赖于第三方插件 `jp@gc - Transactions per Second` 或者其他类似的工具来完成此任务。以下是具体的操作方法: 1. **安装 JMeter Plugins Manager** 首先确保已安装 JMeter Plugins Manager 插件。如果尚未安装,可以从官方资源下载最新版本并手动放置到 JMeter 的 `lib/ext` 文件夹下[^2]。 2. **通过 Plugin Manager 安装所需插件** 打开 JMeter 后,在菜单栏中选择 `Options -> Plugins Manager`,进入插件管理界面。搜索并安装以下两个插件之一: - `Basic Graphs` 插件包中的 TPS 功能模块。 - `jp@gc - Standard Set` 插件包,其中包含 `jp@gc - Transactions per Second` 监听器[^1]。 3. **验证插件安装成功** 成功安装后,重启 JMeter 应用程序。随后可以在监听器列表中发现新增加的选项——`jp@gc - Transactions per Second`。 #### 参数调整 除了必要的插件外,还需要正确设定线程组的相关属性以匹配预期的 TPS 值。这涉及以下几个核心要素: - **线程数量 (Threads)** 表示模拟用户的总数目。理论上讲,更多的线程意味着更高的并发请求量,但这并非绝对等于更大的 TPS 数值[^3]。 - **Ramp-Up 时间** 控制所有线程完全激活所需要花费的时间长度。较短的 Ramp-Up 可能导致瞬间流量激增;而较长则有助于平稳过渡至最大负载状态[^3]。 - **循环次数/持续时间** 设定每个线程重复执行采样操作的数量或者是整个测试过程维持多久。这对于获取稳定可靠的统计数据至关重要。 #### 计算理论上的 TPS 假设已经明确了期望达到的目标 TPS X ,可以根据下面的经验公式粗略估算所需的线程数目 N : \[N = \frac{X * RT}{1}\] 这里 \(RT\) 指的是单次交易响应时间(单位为秒),即从发送请求直到接收到回复为止所耗费的实际耗时。注意这只是理想情况下的简化模型,在实际应用当中还需考虑网络延迟等因素的影响[^2]。 另外值得注意的一点是,即使设置了足够的线程数去追求高 TPS 结果,但如果被测系统的瓶颈在于硬件资源不足或者其他外部因素,则最终可能无法达成预设标准。 ```python def calculate_threads(tps, response_time): """ Calculate the number of threads needed based on desired TPS and average response time. :param tps: Desired transactions per second. :param response_time: Average transaction response time in seconds. :return: Estimated thread count required to achieve target TPS. """ return int(round(tps * response_time)) ``` 以上函数可以帮助快速估计出满足给定条件的大致线程需求量。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值