【LLM】优化预训练模型:参数高效微调 (PEFT) 指南

  🔎大家好,我是Sonhhxg_柒,希望你看完之后,能对你有所帮助,不足请指正!共同学习交流🔎

📝个人主页-Sonhhxg_柒的博客_CSDN博客 📃

🎁欢迎各位→点赞👍 + 收藏⭐️ + 留言📝​

📣系列专栏 - 机器学习【ML】 自然语言处理【NLP】  深度学习【DL】

 🖍foreword

✔说明⇢本人讲解主要包括Python、机器学习(ML)、深度学习(DL)、自然语言处理(NLP)等内容。

如果你对这个系列感兴趣的话,可以关注订阅哟👋

迁移学习在 GPT-3 和 BERT 等大型语言模型的开发中发挥着至关重要的作用。它是一种机器学习技术,其中在特定任务上训练的模型被用作不同但相似的任务的起点。迁移学习背后的想法是,模型从解决一个问题中获得的知识可以用来帮助解决另一个问题。

迁移学习最早的例子之一是使用预先训练的词嵌入(例如 Word2Vec)来提高基于 NLP 的模型的性能。最近,随着 BERT 和 GPT-3 等大型预训练语言模型的出现,迁移学习的范围显着扩展。微调是迁移学习中最流行的方法之一。它涉及通过在较小的特定于任务的标记数据集上进行训练来使预训练模型适应特定任务。

然而,随着大型语言模型的参数数量达到数万亿,微调整个模型的计算成本变得昂贵且通常不切实际。作为回应,焦点已转向上下文学习,其中为模型提供给定任务的提示并返回上下文更新。然而,模型每次进行预测时处理提示等效率低下以及有时性能不佳的情况使其成为不太受欢迎的选择。这就是参数高效微调(PEFT)作为提示的替代范例的用武之地。PEFT 旨在仅微调模型参数的一小部分,实现与完全微调相当的性能,同时显着降低计算要求。本文将详细讨论PEFT方法,

文章目录

重要术语词汇

什么是PEFT?

微调和参数高效微调有什么区别?

PEFT 的好处

PEFT:标准微调的更好替代方案

参数高效的微调技术

Adapter

LoRA

Prefix tuning

Prompt tuning

P-tuning

使用 PEFT 训练您的模型

导入依赖项并定义变量

预处理数据

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Sonhhxg_柒

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值