python中的简单线性拟合

本文介绍了如何使用Python中的numpy和matplotlib库进行线性回归(一次函数)和二次函数拟合,通过实例展示了数据拟合的过程及效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

简单线性回归可以拟合线性关系的数据,一般使用一次函数或二次函数即可。

import numpy as np
import matplotlib.pyplot as plt

x=np.array([1,2,3,4,5,6,7,8,9,10])
y=np.array([2.5,4.5,4.8,5.5,6.0,7.0,7.8,8.0,9.0,10.0])

#一次拟合函数
slope,intercept=np.polyfit(x,y,1)

#二次拟合函数
a,b,c=np.polyfit(x,y,2)

lab1="%+fx%+f"%(slope,intercept)
lab2="%+fx^2%+fx%+f"%(a,b,c)

#散点
plt.scatter(x,y,color='g')
#一次函数图
plt.plot(x,slope*x+intercept,color='r',label=lab1)
#二次函数图
plt.plot(x,a*x*x+b*x+c,color='b',label=lab2)

plt.legend()
plt.show()

效果图

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值