文章目录
一、引言:YOLO检测头的演进与挑战
目标检测作为计算机视觉的核心任务之一,其性能在很大程度上依赖于检测头的设计。YOLO系列从v1到v8的演进过程中,检测头结构经历了多次重大变革:
- YOLOv1-v3:采用单一检测头结构
- YOLOv4-v5:引入PANet特征金字塔
- YOLOv6-v7:优化解耦头设计
- YOLOv8:采用更高效的检测头结构
然而,现有检测头仍面临两个关键挑战:
- 多尺度特征融合不充分
- 小目标检测性能仍有提升空间
本文将提出一种创新的辅助特征融合检测头FASFFHead(Feature Augmented Scale Fusion Head),通过在YOLOv8基础上增加额外目标检测层并优化特征融合方式,显著提升模型性能。
二、FASFFHead核心设计原理
2.1 多尺度特征增强架构
FASFFHead的核心创新在于构建了四级特征融合体系:
- 基础特征层(P3)
- 中间特征层(P4)
- 深层特征层(P5)
- 新增超深层特征层(P6)
class