YOLOv8新突破:FASFFHead多尺度检测的极致探索

一、引言:YOLO检测头的演进与挑战

目标检测作为计算机视觉的核心任务之一,其性能在很大程度上依赖于检测头的设计。YOLO系列从v1到v8的演进过程中,检测头结构经历了多次重大变革:

  1. YOLOv1-v3:采用单一检测头结构
  2. YOLOv4-v5:引入PANet特征金字塔
  3. YOLOv6-v7:优化解耦头设计
  4. YOLOv8:采用更高效的检测头结构

然而,现有检测头仍面临两个关键挑战:

  • 多尺度特征融合不充分
  • 小目标检测性能仍有提升空间

本文将提出一种创新的辅助特征融合检测头FASFFHead(Feature Augmented Scale Fusion Head),通过在YOLOv8基础上增加额外目标检测层并优化特征融合方式,显著提升模型性能。

二、FASFFHead核心设计原理

2.1 多尺度特征增强架构

FASFFHead的核心创新在于构建了四级特征融合体系:

  1. 基础特征层(P3)
  2. 中间特征层(P4)
  3. 深层特征层(P5)
  4. 新增超深层特征层(P6)
class 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值