神经网络 语音识别,神经网络语音合成

本文探讨了语音处理技术,重点关注语音识别,包括预处理、端点检测、模板匹配等步骤。介绍了微软神经网络语音合成声音晓晓的调用方法。还详细讲解了语音识别的基本方法,如基于声道模型、模板匹配和人工神经网络,特别是BP神经网络的原理。最后,简要提及了rbf神经网络算法流程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

语音处理技术流程是什么?

语音信号处理是研究用数字信号处理技术对语音信号进行处理的一门新兴学科。语音信号处理的应用极为广泛,其中的主要技术包括语音编码、语音合成、语音识别和语音增强等。本文选取语音识别作为重点讨论课题。

语音识别就是让计算机听懂人的话,并做出正确的反应。目前主流的语音识别技术是基于统计模式识别的基本理论。本文首先对语音信号处理进行了概述,其中包括各种处理技术、发展及应用。

接下来主要介绍了语音识别方面的知识。根据语音识别系统的基本构成模型,介绍了预处理、端点检测到模板匹配各个部分所涉及到的语音数字信号处理原理和方法。

重点研究了孤立词识别系统的原理、构成及各部分的实现算法。

谷歌人工智能写作项目:神经网络伪原创

如何调用微软神经网络语音合成声音晓晓?

1.    创建Azure 账号文案狗。2.    访问微软Azure云管理平台。 3.    根据操作说明 (英文版),添加语音服务的订阅。

(注意:地区Location选择东南亚Southeast Asia)4.    根据语音API调用说明(英文版),调用神经网络声音,声音名称:Microsoft Server Speech Text to Speech Voice (zh-CN, XiaoxiaoNeural)。

语音识别技术的基本方法

一般来说,语音识别的方法有三种:基于声道模型和语音知识的方法、模板匹配的方法以及利用人工神经网络的方法。

该方法起步较早,在语音识别技术提出的开始,就

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值