本文不做数学推导,从物理意义上讲解拉格朗日乘子法。
原问题
我们要解决带有等式约束的最优化问题。为方便书写,以二维函数为例:
max f(x,y), s.t.g(x,y)=0max\ f(x,y), \ \ s.t. g(x,y)=0max f(x,y), s.t.g(x,y)=0
用下图表示这个问题。f(x)f(x)f(x)参数在二维平面内,其本身是一个曲面,用等高线(蓝色)表示。g(x)=0g(x)=0g(x)=0是二维平面内的一条曲线(红色)。
我们要找g(x,y)=0g(x,y)=0g(x,y)=0上的一个点,其位于f(x,y)f(x,y)f(x,y)最大的等高线上。
问题转换
Step 1
求解上述问题等价于:
找到g(x,y)=0g(x,y)=0g(x,y)=