回溯算法:子集树和排列树

本文探讨了回溯算法在解决子集和排列问题中的应用。通过子集树展示了如何生成一个元素集合的2^n个可能解,而排列树则用于表示n个元素的所有排列。提供了两种基本的回溯算法模板,适用于解决这类问题,并给出了C++实现示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

假设现在有一列数a[0],a[1], ...a[n-1]

①如果一个问题的解的长度不是固定的,并且解和元素顺序无关,即可以从中选择0个或多个,那么解空间的个数将是指数级别的,为2^n,可以用下面的子集树来表示所有的解(假设这里n=4)



PIC. 子集树

子集树的算法框架为


void backtrack(int t) {//表示访问到第t层,t从0开始
if (t == n) //如上图(PIC. 子集树)n = 4的时候就可以输出解了
 output(x);
else
 for (int i = 0; i <= l; i++) { //表示选或不选a[t]
  x[t] = i;
  if (constraint(t) && bound(t))
   backtrack(t + 1);
 }
}

②如果解空间是由n个元素的排列形成,也就是说n个元素的每一个排列都是解空间中的一个元素,那么,最后解空间的组织形式是排列树




PIC.排列树

排列树算法的基本框架为

模板一

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值