如何用 Streamlit 构建自己的数据分析仪表盘

Streamlit 是一个非常流行的 Python 库,用于快速创建数据应用程序和仪表盘,特别适合数据科学家和分析师。它使得用户可以快速将数据分析的过程、结果和可视化展示在一个交互式的网页界面上,而无需繁琐的前端开发。通过简单的 Python 代码,你可以构建出富有交互性的应用程序。

本文将介绍如何使用 Streamlit 构建一个数据分析仪表盘,并展示如何集成数据可视化、交互式控件和数据处理。


📊 一、Streamlit 简介

Streamlit 是一个开源 Python 库,可以让你通过简单的 Python 代码来创建交互式网页应用。它为数据分析、机器学习模型展示和可视化提供了非常高效的开发方式。以下是 Streamlit 的一些特点:

  • 简洁性:无须前端开发,几行代码即可生成仪表盘。
  • 实时性:支持实时更新和交互。
  • 易用性:支持大多数常见的 Python 数据科学库(如 Pandas、Matplotlib、Plotly、Seaborn、Altair 等)。

安装 Streamlit:

pip install streamlit

🛠️ 二、创建你的第一个数据分析仪表盘

1️⃣ 导入必要的库

import streamlit as st
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

2️⃣ 加载数据

首先,我们需要加载一些数据。在本示例中,我们将使用 Pandas 加载 CSV 文件数据。你可以使用任何你需要的数据集。

# 示例数据:从 CSV 文件加载数据
data = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/finance-charts-apple.csv')

3️⃣ 展示数据

Streamlit 提供了多种方式来展示数据,比如表格、图表等。

# 展示数据的前几行
st.write("数据预览", data.head())

4️⃣ 添加交互式控件

Streamlit 支持多种交互控件,可以让用户更灵活地操作数据或图表。比如,用户可以选择日期、数值范围等来动态调整图表。

日期选择器
# 用户选择日期范围
start_date = st.date_input('开始日期', min_value=data['Date'].min(), max_value=data['Date'].max(), value=data['Date'].min())
end_date = st.date_input('结束日期', min_value=data['Date'].min(), max_value=data['Date'].max(), value=data['Date'].max()</
要结合FinBERT模型进行情感分类,并利用LSTM模型预测股票市场趋势,首先需要通过Python网络爬虫技术抓取金融相关数据,包括新闻、报告、社交媒体评论等。数据抓取后,使用数据清洗技术处理抓取的数据,包括文本预处理、去除无效数据、填补缺失值、格式统一等,确保数据质量。 参考资源链接:[基于FinBERT的股票市场情绪分析实现与可视化](https://wenku.csdn.net/doc/6rr8cg6k80) 接下来,使用FinBERT模型对清洗后的数据进行情感分类,它能够准确识别金融文本中的情绪倾向,提供正面、负面或中立的情绪标签。由于股票市场情绪分析往往需要考虑时间序列因素,因此可以借助LSTM模型对情绪序列进行预测,以捕捉情绪随时间的变化趋势。 在Python中,可以使用TensorFlow或PyTorch等深度学习框架来构建LSTM网络模型。训练模型时,需要将FinBERT输出的情感分类结果作为输入数据,进行时间序列分析。模型训练完成后,可以将新收集的金融文本数据输入LSTM模型,预测未来的市场情绪趋势。 最后,为了直观展示分析结果,可以使用Streamlit框架构建一个交互式仪表盘。在这个仪表盘中,可以展示实时的市场情绪指标,以及与情绪相关的统计图表和趋势预测。Streamlit使得非技术用户也能够通过友好的用户界面了解复杂的市场情绪分析结果。 通过这个综合应用,不仅能够深入理解股票市场的动态情绪变化,还可以在实践中学习到网络爬虫、数据清洗、情感分析、时间序列预测和交互式数据可视化等多方面的技能。对于希望深入研究这一领域的开发者和分析师来说,这份资料《基于FinBERT的股票市场情绪分析实现与可视化》将是一个宝贵的资源。 参考资源链接:[基于FinBERT的股票市场情绪分析实现与可视化](https://wenku.csdn.net/doc/6rr8cg6k80)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值