Streamlit 是一个非常流行的 Python 库,用于快速创建数据应用程序和仪表盘,特别适合数据科学家和分析师。它使得用户可以快速将数据分析的过程、结果和可视化展示在一个交互式的网页界面上,而无需繁琐的前端开发。通过简单的 Python 代码,你可以构建出富有交互性的应用程序。
本文将介绍如何使用 Streamlit 构建一个数据分析仪表盘,并展示如何集成数据可视化、交互式控件和数据处理。
📊 一、Streamlit 简介
Streamlit 是一个开源 Python 库,可以让你通过简单的 Python 代码来创建交互式网页应用。它为数据分析、机器学习模型展示和可视化提供了非常高效的开发方式。以下是 Streamlit 的一些特点:
- 简洁性:无须前端开发,几行代码即可生成仪表盘。
- 实时性:支持实时更新和交互。
- 易用性:支持大多数常见的 Python 数据科学库(如 Pandas、Matplotlib、Plotly、Seaborn、Altair 等)。
安装 Streamlit:
pip install streamlit
🛠️ 二、创建你的第一个数据分析仪表盘
1️⃣ 导入必要的库
import streamlit as st
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
2️⃣ 加载数据
首先,我们需要加载一些数据。在本示例中,我们将使用 Pandas 加载 CSV 文件数据。你可以使用任何你需要的数据集。
# 示例数据:从 CSV 文件加载数据
data = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/finance-charts-apple.csv')
3️⃣ 展示数据
Streamlit 提供了多种方式来展示数据,比如表格、图表等。
# 展示数据的前几行
st.write("数据预览", data.head())
4️⃣ 添加交互式控件
Streamlit 支持多种交互控件,可以让用户更灵活地操作数据或图表。比如,用户可以选择日期、数值范围等来动态调整图表。
日期选择器
# 用户选择日期范围
start_date = st.date_input('开始日期', min_value=data['Date'].min(), max_value=data['Date'].max(), value=data['Date'].min())
end_date = st.date_input('结束日期', min_value=data['Date'].min(), max_value=data['Date'].max(), value=data['Date'].max()</