Dify智能体开发:安装与使用插件

安装插件

点击 Dify 平台右上角的“插件”,前往插件管理页,支持通过 Marketplace、GitHub、上传本地文件三种方式安装插件。

安装插件

Marketplace

你可以选择任意插件,点击“安装”按钮将插件安装至当前 Workspace 内。

通过 Marketplace 安装插件

GitHub

你可以直接通过 GitHub 代码仓库链接安装插件,使用此方法安装插件时需确保插件满足代码规范。插件代码仓库需创建 Release 并在附件中包含 .difypkg 后缀的文件包。详细说明请参考发布插件:GitHub

通过 GitHub 安装

上传本地文件

本地文件指的是 .difypkg 后缀的文件包,常用于离线环境或测试环境。开发者可通过此方式安装除官方市场以外的插件文件。对于组织而言,可以开发维护内部插件并通过本地上传的方式安装,避免公开敏感信息。

关于如何打包插件并获取 .difypkg 文件,详细说明请参考打包插件

使用插件

将插件安装至 Workspace 后即可在 Dify 应用内进行使用。下文将简要介绍不同类型的插件对应不同的使用方法。

模型插件

以 OpenAI 为例,安装模型插件后,点击右上角的头像页 → 设置 → 模型供应商,配置 API Key 即可激活该模型供应商。

授权 OpenAI API Key

授权后可以在所有应用类型内选择并使用该大语言模型。

使用模型类型插件

工具插件

工具插件支持在 Chatflow、Workflow、Agent 应用内使用。部分插件在安装后可能还要求进行 API Key 或其它形式的授权,手动添加授权后才能正常使用。

API Key 属敏感信息,授权仅对当前用户有效。团队中的其他人使用该插件时仍需手动输入授权密钥。

本章节将以 Google Search 工具为例,介绍如何使用工具插件。在 Dify Marketplace 搜索并安装插件后,按照页面提示输入 API Key 完成插件授权过程。

授权插件

Agent

创建 Agent 应用后,在应用编排页下方找到 “工具” 选项。选中已安装的工具插件。

使用应用时,输入使用工具的指令文本,例如输入 “当日新闻” 即可调用插件使用谷歌搜索引擎进行在线内容检索。

Agent 工具

Chatflow / Workflow

Chatflow 和 Workflow 类型应用共用一套工作流编排画布,因此工具插件的使用方法一致。

你可以点击节点末尾的 + 号,选择已安装的谷歌插件工具,并将节点与上游节点相连线。

Chatflow / Workflow 工具

在插件的输入变量中填写用户输入的查询内容 query 变量,或其它需要在线检索的信息。

Tools 输入项

你已了解如何使用 Google Search 工具。如需了解其它插件的使用方法,请参考插件详情页的指导使用插件。

使用插件

《CDA数据分析师技能树系列图书》系统整合数据分析核心知识,从基础工具(如Python、SQL、Excel、Tableau、SPSS等)到机器学习、深度学习算法,再到行业实战(金融、零售等场景)形成完整体系。书中结合案例讲解数据清洗、建模、可视化等技能,兼顾理论深度与实操性,帮助读者构建系统化知识框架。同时,内容紧跟行业趋势,涵盖大数据分析、商业智能、ChatGPT与DeepSeek等前沿领域,还配套练习与项目实战,助力读者将知识转化为职场竞争力,是数据分析师从入门到进阶的实用参考资料。

### Dify智能体简介 Dify平台允许用户创建和管理AI代理(Agent),这些Agent能够执行各种任务,从简单的查询到复杂的多步操作。通过集成超过五十种内置工具[^2],如谷歌搜索、图像生成服务(DALL·E, Stable Diffusion)以及计算引擎(WolframAlpha)[^2],开发者可以根据需求灵活配置自己的Agent。 对于想要利用Dify自定义工具来增强Agent功能的情况,官方文档提供了详细的指导说明[^1]。这包括如何贡献新的特性或是改进现有组件的方法论和支持资源链接。 ### 创建使用Dify智能体 为了启动并运行一个基于Dify框架下的智能体项目: - **选择基础模型**:决定采用哪种大型语言模型作为底层支持。 - **定义行为逻辑**:编写具体的交互流程或算法实现特定应用场景中的决策过程。 - **添加外部APIs和服务**:根据实际需要引入第三方接口或者内部开发的服务模块,比如上述提到的那些高级应用插件。 - **测试优化性能表现**:经过多次迭代调整参数设置直至达到满意的响应速度及准确性水平为止。 ```python from dify.agent import AgentBuilder agent = ( AgentBuilder() .with_model("large-language-model") # Select base model .add_tool("google_search", params={"api_key": "your_api_key"}) # Add external service as tool .build() ) response = agent.run(query="What is the weather like today?") print(response) ``` 此段代码展示了怎样快速搭建起具备基本能力的Dify智能体实例,并对其发出简单指令获取返回结果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

王国平

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值