- 博客(22)
- 资源 (1)
- 收藏
- 关注
原创 基于ResNet50的交通标志识别实战
:人类驾驶员误读标志导致30%交通事故(世卫组织数据),恶劣天气下误判率提升50%:自动驾驶的“道路语言翻译器”,实时识别限速、禁令等58类标志。6164张高质量图像,覆盖58类标志(限速/禁令/指示等):降低事故率 + 提升交通效率 + 推动智慧城市建设。:ImageNet千万级图像预训练,迁移学习加速收敛。:解决深层网络梯度消失,50层深度完美捕捉细微特征。:99.13%(综合精确率与召回率)>5e-5震荡/<5e-5收敛慢。:10轮收敛至0.01以下。:99.76%(测试集)
2025-08-19 18:34:14
422
原创 基于深度学习的森林火灾图像识别实战
森林火灾作为一种自然灾害,对人类社会和自然环境构成了严重威胁。随着深 度学习技术的发展,特别是卷积神经网络(CNN)在图像识别领域的显著进展,本博客旨在探索CNN 在森林火灾图像识别中的应用。通过构建和训练 CNN 模型,实现了对火灾和非火灾图像的高 效识别。实验结果表明,该模型在测试集上取得了较高的准确率,为森林火灾的早期检测和预防提供了有力的技术支持。
2025-08-19 17:56:21
623
原创 混凝土抗压强度预测:基于机器学习的全流程实战解析
本文研究了数据驱动方法预测混凝土抗压强度的关键环节。通过分析1030组数据,采用箱线图与Z-score法检测异常值,热力图揭示龄期(r=0.60)、水泥用量(r=0.49)与强度的强正相关。模型对比显示决策树(MAE=5.05,R²=0.80)性能最优,因其能捕捉非线性特征。研究建议未来可引入时间序列特征、优化集成学习算法,并探讨了加速养护与自然养护的等效性问题。该分析为混凝土强度预测提供了数据支持,有助于优化工程实践。
2025-08-15 17:25:17
1034
原创 基于多模型的零售销售预测实战指南
本文基于Kaggle零售销售数据集(2013-2015年),构建了一套完整的销售预测流程。通过数据融合与清洗,对293万条日粒度销售记录进行特征工程处理,包括异常值过滤、时间特征提取和数据标准化。可视化分析揭示了12月假日经济效应和销售渠道的显著长尾分布特点。在模型对比实验中,随机森林表现最优(RMSE=5.273),而LSTM时序模型因训练轮次不足表现欠佳。未来优化方向包括引入外部特征和采用深度集成方案。该研究为零售企业提供了实用的销售预测方法框架。
2025-08-15 16:55:40
806
1
原创 金融风控实战:从数据到模型的信用评分系统构建全解析
本研究基于GiveMeSomeCredit数据集,构建了金融信贷违约预测模型。针对目标变量严重不平衡问题(违约率6.5%),采用分层下采样技术处理。通过数据可视化发现借款人年龄集中在30-70岁区间,并运用KNNImputer进行缺失值填补。模型对比显示随机森林效果最佳(准确率93.4%),关键特征包括月收入、循环信贷利用率和年龄。混淆矩阵分析表明随机森林对违约样本的召回率更优。研究成果可直接应用于风险定价、授信决策等业务场景,未来可通过特征组合、模型集成等方式进一步优化。
2025-08-14 20:09:15
906
原创 风电功率预测实战:从数据清洗到时空建模
本文基于KDDCup2022冠军数据集,采用轻量级神经网络进行风电功率预测研究。首先对SDWPF数据集进行预处理,筛选40号风机数据并清洗异常值,通过Spearman热力图确定风速(Wspd)和叶片角度(Pab1-3)为关键特征。构建了MLP和CNN两种轻量模型,经实验优化后,MLP模型(4层结构)取得最佳效果,测试集R²达0.99,RMSE为38.3kW,推理速度0.4ms/样本。研究验证了轻量模型在满足电网实时调度需求的同时,能有效预测风电功率波动,为清洁能源并网提供了可行技术方案。
2025-08-14 16:02:07
634
原创 毕业生薪资预测:用数据科学解锁职业潜力
在当今竞争激烈的就业市场中,毕业生薪资水平不仅关系到个人职业发展,也是教育机构优化课程设置的重要参考。然而,薪资受多种因素影响:学历背景、专业技能、毕业院校、成绩表现等。如何从这些复杂因素中找出关键驱动力?这正是数据科学的用武之地!本文将带您一步步构建一个,通过Python实现从数据清洗、特征工程到机器学习建模的全流程。我们将使用真实数据集(已脱敏处理),重点演示如何将原始数据转化为预测洞见。
2025-08-13 18:53:38
643
原创 基于机器学习的广告识别系统:数据预处理与模型对比分析
本文基于公开数据集构建广告识别系统,通过完整机器学习流程实现内容分类。数据集包含3279个样本,经过缺失值处理、类别编码等预处理后,对比了四种分类模型性能。系统可有效区分广告内容,误判率低,适用于内容过滤、点击预测等场景。未来可引入深度学习和多模态特征提升性能。
2025-08-13 18:22:04
720
原创 基于机器学习的空气质量预测全流程解析:从数据采集到模型优化
本研究基于机器学习方法构建空气质量指数(AQI)预测模型。通过爬取7个城市2023年空气质量数据,采用随机森林算法进行建模分析。结果显示:PM10与AQI相关性最高(r=0.94),PM2.5次之(r=0.89);拉萨空气质量最优,兰州最差;优化后模型预测误差(RMSE)为22.22,达到工业应用标准。研究为空气质量预警和污染防控提供了有效技术支撑。
2025-08-12 18:33:02
1949
原创 探索学生项目分布:三种聚类算法的比较分析
摘要:研究基于619名学生8维特征数据集,评估GMM、K-Means和层次聚类对4个学生项目的分类效果。通过标准化和PCA降维处理后,K-Means表现最优(测试集准确率55%),项目2和4呈现明显聚集特征。建议通过特征工程(如MCQ占比)和参数调优进一步提升模型性能,未来可探索半监督学习方法。
2025-08-12 17:51:15
244
原创 英国PCR检测容量预测:时间序列分析与XGBoost建模全流程
本文通过分析英国2020-2023年PCR检测容量数据,构建了时间序列预测模型。研究首先对原始数据进行清洗和特征工程,提取了日期、星期、季度等时间特征。XGBoost模型分析显示,年内天数(dayofyear)是最重要的预测特征,贡献度达92%,其次是星期几(dayofweek)和年份(year)。模型验证了公共卫生资源需求存在明显的周度和季节性波动规律,为资源调配提供了量化依据。研究建议进一步整合外部数据(如天气、节假日)提升预测精度,并指出时间特征是公共卫生资源预测的核心维度。
2025-08-02 22:07:59
448
原创 银行客户定期存款预测:数据驱动营销策略优化全解析
本文探讨了如何利用机器学习精准识别银行潜在存款客户。基于41,188条客户数据,通过SVM和XGBoost模型对比分析,发现XGBoost凭借处理非线性关系的优势,以91%准确率和76.87%的F1分数更优。研究揭示了客户决策的关键因素:经济环境、利率敏感性和沟通质量。虽然存在样本不均衡等局限,但该模型可提升营销效率76.87%,为银行精准营销提供了数据智能解决方案。结果表明,构建"经济指标+客户特征+交互行为"的复合预测模型,能有效识别高转化潜力客户。
2025-08-02 21:45:28
1121
原创 预测员工流失:当HR遇上机器学习
本文介绍了一个基于机器学习的员工流失预测项目,旨在帮助企业降低人才流失成本。通过数据预处理(删除无关特征、分类变量编码、归一化处理)和SVM模型构建,结合网格搜索优化参数(最佳C=10,gamma=0.1),最终取得94%的预测准确率。项目揭示了加班时长、年龄、在职年限等关键影响因素,为企业人力资源决策提供数据支持。虽存在数据维度有限等改进空间,但证明了机器学习在人才保留领域的实用价值,建议企业关注加班管理、职业发展规划等干预措施。
2025-07-27 20:51:50
701
原创 二手车估价预测实战分析:从数据处理到模型选择
摘要:本文基于瓜子网1万条二手车交易数据,通过数据清洗、特征工程和相关性分析,构建了精准的二手车估价模型。研究发现新车价和使用天数是核心影响因素(Spearman系数分别为0.89和-0.72)。在多元线性回归、决策树和随机森林的模型对比中,随机森林以94%的预测精度胜出,其集成学习优势和特征筛选能力有效解决了二手车价格评估难题。该模型为电商平台实时估价、个人卖家定价和金融机构贷款产品开发提供了技术支持,推动非标品向标准化转变。未来可融合图像识别和地域因素进一步优化模型。
2025-07-27 20:36:32
571
原创 基于朴素贝叶斯的个性化音乐推荐系统:从数据到智能决策的全栈实践
本文提出了一种基于朴素贝叶斯算法的智能音乐推荐系统,通过分层架构设计实现精准的个性化推荐。系统采用Selenium爬虫获取29,943条音乐数据,构建特征工程并进行数据预处理。核心算法应用贝叶斯定理,通过特征条件独立假设简化计算,实现80.1%的准确率。系统采用PyQt5构建响应式界面,支持三区布局和动态加载。当前面临冷启动和数据规模限制,未来将向混合推荐、实时特征分析和边缘计算方向发展,探索音乐推荐与情感共鸣的深度融合。
2025-07-22 20:51:34
1122
原创 突破反爬的艺术:基于Selenium的QQ音乐数据爬取实战
本文探讨了基于Selenium的QQ音乐数据爬虫系统构建,重点分析了技术选型、系统架构和关键实现策略。针对动态渲染、反爬机制等挑战,系统采用浏览器指纹修改、智能等待、三级重试等解决方案,实现稳定数据采集。通过分层架构设计,结合二维码登录、多路径定位等策略,有效突破平台限制。文章还提出了数据应用方向,如流派演化分析和歌手影响力模型,并强调在数据获取中需平衡技术实现与平台规则。该系统为音乐产业数据分析提供了可靠的数据源和技术参考。
2025-07-22 16:09:55
1109
原创 YOLO环境配置指南:快速搭建目标检测平台
本文详细介绍了YOLO目标检测算法的环境配置流程,支持Windows系统。配置过程包括:1)硬件准备(推荐NVIDIA显卡);2)软件基础(Python3.8+Anaconda);3)分步骤安装PyTorch(提供CPU/GPU版本选择);4)环境验证方法;5)YOLO依赖库安装。特别说明了GPU版本的CUDA版本匹配问题,并给出完整的安装命令和验证方案,帮助开发者快速搭建YOLO开发环境。
2025-07-21 22:34:17
405
原创 基于大数据的xx市二手房价格预测研究--基于Hadoop
本文基于大数据和机器学习技术,构建了二手房价格预测模型。研究采用Python爬取链家网约17000条交易数据,通过Pyspark进行数据清洗、特征工程和分布式处理,利用Spearman相关系数分析关键影响因素。采用随机森林和GBDT两种算法构建预测模型,并运用R2、MSE、MAE和RMSE指标评估模型性能。结果表明,该方法能有效预测房价走势,为购房者、投资者和开发商提供决策参考。研究创新性地结合Hadoop分布式存储与机器学习技术,提升了房价预测的准确性和可解释性。
2025-07-21 16:09:22
1201
原创 探索鸟类识别——基于深度学习的智能鸟类分类系统(二)--技术架构与实现解析
本文提出了一种基于深度学习的智能鸟类识别系统,采用迁移学习技术,在VGG16、ResNet50等四种预训练模型基础上进行微调,构建高效分类器。系统包含325种鸟类、约5万张图片的数据集,通过数据增强技术提升模型泛化能力。开发了基于Flask框架的Web应用,实现图像上传、模型预测、结果展示等功能,并集成用户管理、数据管理模块。实验评估了不同模型的准确率、精确率和召回率,为实际应用提供模型选择依据。该系统将深度学习技术与生态学知识相结合,为鸟类识别提供智能化解决方案。
2025-07-19 15:54:50
963
原创 探索鸟类识别——基于深度学习的智能鸟类分类系统(一)
科技赋能自然探索:智能鸟类识别系统 摘要:本文介绍了一款融合深度学习技术的智能鸟类识别系统,通过四大专业模型(VGG16、ResNet50、InceptionV3、EfficientNet)实现高达92.7%的平均识别准确率。系统提供一键识别功能,可显示鸟类学名、中文名及生态信息,并内置231种常见鸟类数据库。采用分层权限设计,具备操作日志追踪功能,界面采用半透明卡片式布局,优化用户体验。该技术让科技成为探索自然的桥梁,帮助用户快速识别和了解身边的鸟类。
2025-07-19 15:07:04
263
原创 STGNN交通流预测代码复现全过程
摘要:本文介绍了基于STGNN的交通流量预测实现流程。首先从GitHub获取METR-LA和PEMS-BAY数据集及STGNN源码,然后进行数据预处理,将交通数据转换为npz格式,空间数据转为npy格式。针对模型代码进行了关键修改,包括添加timesteps参数等。提供了训练命令和参数配置,并解决了数据处理过程中出现的维度错误问题,通过检查数据格式和修改加载函数来确保数据正确输入。整个过程涵盖了从数据准备、模型修改到训练执行的完整实现步骤。
2025-07-17 09:38:39
274
基于多模型的零售销售预测实战指南
2025-08-15
金融风控实战:从数据到模型的信用评分系统构建全解析
2025-08-14
基于机器学习的空气质量预测全流程解析:从数据采集到模型优化
2025-08-14
用于笑脸表情识别的笑脸数据集GENKI-4K
2022-05-23
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人