# 引言
在构建聊天机器人时,管理消息历史是一项关键的功能。它不仅可以提升用户体验,还能增加对话的智能性。通过使用LangChain中的`RunnableWithMessageHistory`类,我们可以轻松为特定类型的链添加消息历史,支持多会话并为每个会话存储相关的对话历史。在这篇文章中,我们将详细介绍如何利用这个类高效管理消息历史,同时分享一些实际代码示例和解决方案。
# 主要内容
## 消息历史的存储与加载
要有效管理消息历史,我们首先需要实现存储和加载的功能。在`RunnableWithMessageHistory`中,你需要提供一个`get_session_history`函数,该函数接收一个`session_id`并返回一个`BaseChatMessageHistory`对象。这个对象负责加载和保存消息,通常会被初始化为一个特定的会话ID。
**示例:使用SQLite存储消息**
```python
from langchain_community.chat_message_histories import SQLChatMessageHistory
def get_session_history(session_id):
return SQLChatMessageHistory(session_id, "sqlite:///memory.db")
包装Runnable对象
RunnableWithMessageHistory
可以包装任何接收BaseMessages
或包含历史消息的字典作为输入,并输出AIMessage或BaseMessage序列的对象。这可以是一个简单的聊天模型或复杂的LLM链。
示例:包装聊天模型
from langchain_core