45、机器学习模型的深入解析与实践

机器学习模型的深入解析与实践

在机器学习领域,多种模型各有特点和应用场景。下面将详细介绍逻辑回归、支持向量机(SVM)、神经网络以及概率图模型的相关知识和实践。

逻辑回归

逻辑回归是一种常用的分类算法,下面从不同编码方式和图形化视角进行介绍。
- 零一编码的逻辑回归
- 模型与损失函数 :预测对数几率的模型与线性回归模型类似,但损失函数不同,使用的是逻辑损失(logistic loss),也称为对数损失(log-loss)或交叉熵损失(cross-entropy loss)。单个预测的损失公式为:$log_loss = -p_{actual} log(p_{pred}) - (1 - p_{actual}) log(1 - p_{pred})$。
- 代码实现

# for logistic regression
def logreg_model(weights, ftrs):
    return rdot(weights, ftrs)
def logreg_loss_01(predicted, actual):
    # sum(-actual log(predicted) - (1-actual) log(1-predicted))
    # for 0/1 target works out to
    return np.sum(- predicted * actual + np.log(1+np.exp(predicted)))
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值