机器学习模型的深入解析与实践
在机器学习领域,多种模型各有特点和应用场景。下面将详细介绍逻辑回归、支持向量机(SVM)、神经网络以及概率图模型的相关知识和实践。
逻辑回归
逻辑回归是一种常用的分类算法,下面从不同编码方式和图形化视角进行介绍。
- 零一编码的逻辑回归
- 模型与损失函数 :预测对数几率的模型与线性回归模型类似,但损失函数不同,使用的是逻辑损失(logistic loss),也称为对数损失(log-loss)或交叉熵损失(cross-entropy loss)。单个预测的损失公式为:$log_loss = -p_{actual} log(p_{pred}) - (1 - p_{actual}) log(1 - p_{pred})$。
- 代码实现 :
# for logistic regression
def logreg_model(weights, ftrs):
return rdot(weights, ftrs)
def logreg_loss_01(predicted, actual):
# sum(-actual log(predicted) - (1-actual) log(1-predicted))
# for 0/1 target works out to
return np.sum(- predicted * actual + np.log(1+np.exp(predicted)))