回归方法深入解析:从支持向量回归到回归树
在数据科学和机器学习领域,回归分析是一种至关重要的技术,用于预测连续型变量的值。本文将详细介绍几种常见的回归方法,包括支持向量回归、分段常数回归和回归树,并通过代码示例展示它们的实现过程。
支持向量回归(Support Vector Regression)
支持向量回归(SVR)是一种强大的回归技术,它通过寻找一个能够最大程度包容数据误差的超平面来进行预测。在处理数据时,我们可以通过绘制一个围绕中心线的带宽来捕捉数据中的大部分噪声,将小误差忽略不计。中心线类似于支持向量分类器(SVC)中的最大间隔分隔线。
从线性回归到正则化回归再到支持向量回归,是一个逐步发展的过程。在这个过程中,我们不断调整和添加基本配方的某些部分。以下是一个具体的代码示例,展示了如何计算不同回归方法的成本:
import numpy as np
# hyperparameters for the scenario
C, epsilon = 1.0, .25
# parameters
weights = np.array([1.3])
# prediction, error, loss
predictions = rdot(weights, xs.reshape(-1, 1))
errors = ys - predictions
loss_sse = np.sum(errors ** 2)
loss_sae = np.sum(np.abs(errors))
loss_hinge = np.sum(np.max(np.abs(errors) - epsilon, 0))
# compl