机器学习模型评估与优化:从复杂度到成本的全面解析
1. 模型复杂度与简单性
在机器学习中,模型的复杂度与简单性是一对需要平衡的概念。过度增加复杂度可能会让模型表现变差,因为增加的复杂度可能用于捕捉噪声而非真实模式。
1.1 简单性原则
简单性是一个重要的经验法则,在科学和哲学领域被称为奥卡姆剃刀原则,即“如无必要,勿增实体”。对于模型而言,除非有充分理由,否则不应增加复杂度。例如,除非能降低测试误差,否则不应使用高次多项式。
1.2 复杂度的影响
不同复杂度的模型在训练和测试数据上的表现不同:
- 欠拟合 :非常简单的模型可能无法学习训练数据中的模式,在测试数据上的表现也很差。
- 过拟合 :非常复杂的模型可能完美学习训练数据,但由于学习了训练数据中的无关关系,在测试数据上表现不佳。
- 恰到好处 :中等复杂度的模型在训练和测试数据上都能有良好表现。
我们需要在简单性和复杂度之间找到合适的权衡,以找到恰到好处的模型。
2. 从误差到成本
在讨论过拟合和欠拟合时,我们比较了模型复杂度和误差率。误差和复杂度是紧密相关的,随着我们深入了解各种学习方法,会发现有些方法可以明确地在训练误差和复杂度之间进行权衡。
2.1 损失
首先,我们构建损失函数来量化模型在单个示例上的错误情况。训练损失函数则用于衡量模型在整个训练集上的表现,它是每个示例损失的总和。
以下是计算训练损失的