分类预测入门:基础分类器与评估
在机器学习中,分类是一项重要的任务,它旨在根据输入特征预测样本所属的类别。本文将介绍两种简单的分类器:k - 近邻(k - NN)和朴素贝叶斯(Naive Bayes),并对它们进行评估。
1. k - 近邻分类模型
k - 近邻(k - NN)是一种基本的监督学习模型,它通过找到与待预测样本最近的 k 个邻居来进行分类。以下是构建和使用 3 - NN 模型的步骤:
1. 创建 3 - NN 模型 :使用 neighbors.KNeighborsClassifier
类,设置 n_neighbors = 3
。
2. 拟合模型 :使用训练数据对模型进行拟合。
3. 预测 :使用拟合好的模型对测试数据进行预测。
4. 评估 :使用准确率评估预测结果。
以下是相应的 Python 代码:
# default n_neighbors = 5
knn = neighbors.KNeighborsClassifier(n_neighbors=3)
fit = knn.fit(iris_train_ftrs, iris_train_tgt)
preds = fit.predict(iris_test_ftrs)
# evaluate our predictions against the held - back testing ta