9、分类预测入门:基础分类器与评估

分类预测入门:基础分类器与评估

在机器学习中,分类是一项重要的任务,它旨在根据输入特征预测样本所属的类别。本文将介绍两种简单的分类器:k - 近邻(k - NN)和朴素贝叶斯(Naive Bayes),并对它们进行评估。

1. k - 近邻分类模型

k - 近邻(k - NN)是一种基本的监督学习模型,它通过找到与待预测样本最近的 k 个邻居来进行分类。以下是构建和使用 3 - NN 模型的步骤:
1. 创建 3 - NN 模型 :使用 neighbors.KNeighborsClassifier 类,设置 n_neighbors = 3
2. 拟合模型 :使用训练数据对模型进行拟合。
3. 预测 :使用拟合好的模型对测试数据进行预测。
4. 评估 :使用准确率评估预测结果。

以下是相应的 Python 代码:

# default n_neighbors = 5
knn = neighbors.KNeighborsClassifier(n_neighbors=3)
fit = knn.fit(iris_train_ftrs, iris_train_tgt)
preds = fit.predict(iris_test_ftrs)
# evaluate our predictions against the held - back testing ta
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值