算法笔记(六)—— 二叉树相关概念及经典算法题

文章介绍了二叉树的相关概念,包括搜索二叉树的中序遍历特性、完全二叉树的宽度遍历判断、满二叉树的定义以及平衡二叉树的高度差条件。此外,还讨论了如何找到两个节点的最低公共祖先,以及二叉树的序列化和反序列化方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

二叉树的相关概念(判断方式)

1. 搜索二叉树:对每棵子树,左树比头小,右树比头大。

        中序遍历,判断是否升序

2. 完全二叉树:最后一层满或从左到右遍满。

        宽度遍历,如果有节点有右孩子没左孩子,返回false,如果遇到第一个左右孩子不双全的情况,那么接下来遇到的所有节点都必须是叶节点

3. 满二叉树:节点个数 = 2^深度-1

        左边子树需要满足满二叉树,右边子树需要满足满二叉树

4. 平衡二叉树:对任何一个子树,左树和右树高度差不超过1

        4.1. 左子树平衡,右子树平衡

        4.2. 左树高度差和右树高度差之差不超过1

找俩个节点的最低公共祖先

方法一:哈希表存储节点对应的父结点,然后用哈希set来进行去重找第一个祖先。

方法二(算法优化):

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution {
public:
    TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
        if(root==nullptr||root==p||root==q)return root;
        TreeNode* left = lowestCommonAncestor(root->left , p , q);
        TreeNode* right = lowestCommonAncestor(root->right , p , q);
        if(left!=nullptr&&right!=nullptr){
            return root;
        }
        return left==nullptr?right:left;
    }
};

找一个节点中序遍历的后继节点(带父节点指针)

1. 节点有右树,则后继为右树上的最左节点

2. 节点无右树,往上走,看前节点是不是当前节点左孩子,如果是则当前节点为后继

二叉树序列化和反序列化

序列化:_表示值结束,#表示nullptr

反序列化:根据得到的字符串还原即可

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值