P8816 [CSP-J 2022] 上升点列
题目描述
在一个二维平面内,给定 nnn 个整数点 (xi,yi)(x_i, y_i)(xi,yi),此外你还可以自由添加 kkk 个整数点。
你在自由添加 kkk 个点后,还需要从 n+kn + kn+k 个点中选出若干个整数点并组成一个序列,使得序列中任意相邻两点间的欧几里得距离恰好为 111 而且横坐标、纵坐标值均单调不减,即 xi+1−xi=1,yi+1=yix_{i+1} - x_i = 1, y_{i+1} = y_ixi+1−xi=1,yi+1=yi 或 yi+1−yi=1,xi+1=xiy_{i+1} - y_i = 1, x_{i+1} = x_iyi+1−yi=1,xi+1=xi。请给出满足条件的序列的最大长度。
输入格式
第一行两个正整数 n,kn, kn,k 分别表示给定的整点个数、可自由添加的整点个数。
接下来 nnn 行,第 iii 行两个正整数 xi,yix_i, y_ixi,yi 表示给定的第 iii 个点的横纵坐标。
输出格式
输出一个整数表示满足要求的序列的最大长度。
输入输出样例 #1
输入 #1
8 2
3 1
3 2
3 3
3 6
1 2
2 2
5 5
5 3
输出 #1
8
输入输出样例 #2
输入 #2
4 100
10 10
15 25
20 20
30 30
输出 #2
103
说明/提示
【样例 #3】
见附件中的 point/point3.in
与 point/point3.ans
。
第三个样例满足 k=0k = 0k=0。
【样例 #4】
见附件中的 point/point4.in
与 point/point4.ans
。
【数据范围】
保证对于所有数据满足:1≤n≤5001 \leq n \leq 5001≤n≤500,0≤k≤1000 \leq k \leq 1000≤k≤100。对于所有给定的整点,其横纵坐标 1≤xi,yi≤1091 \leq x_i, y_i \leq {10}^91≤xi,yi≤109,且保证所有给定的点互不重合。对于自由添加的整点,其横纵坐标不受限制。
测试点编号 | n≤n \leqn≤ | k≤k \leqk≤ | xi,yi≤x_i,y_i \leqxi,yi≤ |
---|---|---|---|
1∼21 \sim 21∼2 | 101010 | 000 | 101010 |
3∼43 \sim 43∼4 | 101010 | 100100100 | 100100100 |
5∼75 \sim 75∼7 | 500500500 | 000 | 100100100 |
8∼108 \sim 108∼10 | 500500500 | 000 | 109{10}^9109 |
11∼1511 \sim 1511∼15 | 500500500 | 100100100 | 100100100 |
16∼2016 \sim 2016∼20 | 500500500 | 100100100 | 109{10}^9109 |
C++实现
#include <bits/stdc++.h>
using namespace std;
#define x first
#define y second
int i,j,p,n,k,f[505][105];
pair<int,int>a[505];
int main()
{
cin>>n>>k;
for(i=1;i<=n;i++)cin>>a[i].x>>a[i].y;
sort(a+1,a+n+1);
for(i=1;i<=n;i++)
{
for(j=0;j<=k;j++)f[i][j]=1+j;
}
for(i=2;i<=n;i++)
{
for(j=i-1;j>=1;j--) // j -> i
{
if(a[j].y>a[i].y)continue;
int d=a[i].x-a[j].x+a[i].y-a[j].y-1;
for(p=d;p<=k;p++)f[i][p]=max(f[i][p],f[j][p-d]+d+1);
}
}
int ans=0;
for(i=1;i<=n;i++)ans=max(ans,f[i][k]);
cout<<ans;
return 0;
}
后续
接下来我会不断用C++来实现信奥比赛中的算法题、GESP考级编程题实现、白名单赛事考题实现,记录日常的编程生活、比赛心得,感兴趣的请关注,我后续将继续分享相关内容