打卡信奥刷题(1790)用C++实现信奥 P8816 [CSP-J 2022] 上升点列

P8816 [CSP-J 2022] 上升点列

题目描述

在一个二维平面内,给定 nnn 个整数点 (xi,yi)(x_i, y_i)(xi,yi),此外你还可以自由添加 kkk 个整数点。

你在自由添加 kkk 个点后,还需要从 n+kn + kn+k 个点中选出若干个整数点并组成一个序列,使得序列中任意相邻两点间的欧几里得距离恰好为 111 而且横坐标、纵坐标值均单调不减,即 xi+1−xi=1,yi+1=yix_{i+1} - x_i = 1, y_{i+1} = y_ixi+1xi=1,yi+1=yiyi+1−yi=1,xi+1=xiy_{i+1} - y_i = 1, x_{i+1} = x_iyi+1yi=1,xi+1=xi。请给出满足条件的序列的最大长度。

输入格式

第一行两个正整数 n,kn, kn,k 分别表示给定的整点个数、可自由添加的整点个数。

接下来 nnn 行,第 iii 行两个正整数 xi,yix_i, y_ixi,yi 表示给定的第 iii 个点的横纵坐标。

输出格式

输出一个整数表示满足要求的序列的最大长度。

输入输出样例 #1

输入 #1

8 2
3 1
3 2
3 3
3 6
1 2
2 2
5 5
5 3

输出 #1

8

输入输出样例 #2

输入 #2

4 100
10 10
15 25
20 20
30 30

输出 #2

103

说明/提示

【样例 #3】

见附件中的 point/point3.inpoint/point3.ans

第三个样例满足 k=0k = 0k=0

【样例 #4】

见附件中的 point/point4.inpoint/point4.ans

【数据范围】

保证对于所有数据满足:1≤n≤5001 \leq n \leq 5001n5000≤k≤1000 \leq k \leq 1000k100。对于所有给定的整点,其横纵坐标 1≤xi,yi≤1091 \leq x_i, y_i \leq {10}^91xi,yi109,且保证所有给定的点互不重合。对于自由添加的整点,其横纵坐标不受限制。

测试点编号n≤n \leqnk≤k \leqkxi,yi≤x_i,y_i \leqxi,yi
1∼21 \sim 212101010000101010
3∼43 \sim 434101010100100100100100100
5∼75 \sim 757500500500000100100100
8∼108 \sim 10810500500500000109{10}^9109
11∼1511 \sim 151115500500500100100100100100100
16∼2016 \sim 201620500500500100100100109{10}^9109

C++实现

#include <bits/stdc++.h>

using namespace std;
#define x first
#define y second
int i,j,p,n,k,f[505][105]; 
pair<int,int>a[505];
int main()
{
	cin>>n>>k;
	for(i=1;i<=n;i++)cin>>a[i].x>>a[i].y;
	sort(a+1,a+n+1);
	for(i=1;i<=n;i++)
	{
		for(j=0;j<=k;j++)f[i][j]=1+j; 
	}
	for(i=2;i<=n;i++)
	{
		for(j=i-1;j>=1;j--) // j -> i
		{
			if(a[j].y>a[i].y)continue;
			int d=a[i].x-a[j].x+a[i].y-a[j].y-1;
			for(p=d;p<=k;p++)f[i][p]=max(f[i][p],f[j][p-d]+d+1);
		}
	}
	int ans=0;
	for(i=1;i<=n;i++)ans=max(ans,f[i][k]);
	cout<<ans;
	return 0;
}


在这里插入图片描述

后续

接下来我会不断用C++来实现信奥比赛中的算法题、GESP考级编程题实现、白名单赛事考题实现,记录日常的编程生活、比赛心得,感兴趣的请关注,我后续将继续分享相关内容

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值