P8744 [蓝桥杯 2021 省 A] 左孩子右兄弟
题目描述
对于一棵多叉树,我们可以通过“左孩子右兄弟”表示法,将其转化成一棵二叉树。
如果我们认为每个结点的子结点是无序的,那么得到的二叉树可能不唯一。换句话说,每个结点可以选任意子结点作为左孩子,并按任意顺序连接右兄弟。
给定一棵包含 NNN 个结点的多叉树,结点从 111 至 NNN 编号,其中 111 号结点是根,每个结点的父结点的编号比自己的编号小。请你计算其通过"左孩子右兄弟"表示法转化成的二叉树,高度最高是多少。(只有根结点这一个结点的树高度为 000)
例如如下的多叉树:
可能有以下 333 种 (这里只列出 333 种, 并不是全部) 不同的 “左孩子右兄弟” 表示:
其中最后一种高度最高, 为 444。
输入格式
输入的第一行包含一个整数 NNN 。
以下 N−1N-1N−1 行, 每行包含一个整数, 依次表示 222 至 NNN 号结点的父结点编号。
输出格式
输出一个整数表示答案。
输入输出样例 #1
输入 #1
5
1
1
1
2
输出 #1
4
说明/提示
对于 30%30 \%30% 的评测用例,1≤N≤201 \leq N \leq 201≤N≤20;
对于所有评测用例,1≤N≤1051 \leq N \leq 10^51≤N≤105 。
蓝桥杯 2021 第一轮省赛 A 组 H 题。
C++实现
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll N = 1e5 + 10;
ll n, sz[N], head[N], dp[N], cnt, u;
struct Edge { ll nxt, to; } e[N << 1];
void add(ll u, ll v) { e[++ cnt] = {head[u], v}; head[u] = cnt; } //链式前向星
void dfs(ll u) {
for(ll i = head[u], v; i; i = e[i].nxt) {
v = e[i].to;
dfs(v);
dp[u] = max(dp[u], dp[v]);
}
dp[u] += sz[u];
} //树形 DP
signed main() {
cin >> n;
for(ll i = 2; i <= n; ++ i) cin >> u, add(u, i), ++ sz[u];
dfs(1);
cout << dp[1];
return 0;
}
后续
接下来我会不断用C++来实现信奥比赛中的算法题、GESP考级编程题实现、白名单赛事考题实现,记录日常的编程生活、比赛心得,感兴趣的请关注,我后续将继续分享相关内容