打卡信奥刷题(1771)用C++实现信奥 P8744 [蓝桥杯 2021 省 A] 左孩子右兄弟

P8744 [蓝桥杯 2021 省 A] 左孩子右兄弟

题目描述

对于一棵多叉树,我们可以通过“左孩子右兄弟”表示法,将其转化成一棵二叉树。

如果我们认为每个结点的子结点是无序的,那么得到的二叉树可能不唯一。换句话说,每个结点可以选任意子结点作为左孩子,并按任意顺序连接右兄弟。

给定一棵包含 NNN 个结点的多叉树,结点从 111NNN 编号,其中 111 号结点是根,每个结点的父结点的编号比自己的编号小。请你计算其通过"左孩子右兄弟"表示法转化成的二叉树,高度最高是多少。(只有根结点这一个结点的树高度为 000

例如如下的多叉树:

可能有以下 333 种 (这里只列出 333 种, 并不是全部) 不同的 “左孩子右兄弟” 表示:

其中最后一种高度最高, 为 444

输入格式

输入的第一行包含一个整数 NNN

以下 N−1N-1N1 行, 每行包含一个整数, 依次表示 222NNN 号结点的父结点编号。

输出格式

输出一个整数表示答案。

输入输出样例 #1

输入 #1

5
1
1
1
2

输出 #1

4

说明/提示

对于 30%30 \%30% 的评测用例,1≤N≤201 \leq N \leq 201N20;

对于所有评测用例,1≤N≤1051 \leq N \leq 10^51N105

蓝桥杯 2021 第一轮省赛 A 组 H 题。

C++实现

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll N = 1e5 + 10; 
ll n, sz[N], head[N], dp[N], cnt, u;
struct Edge { ll nxt, to; } e[N << 1];
void add(ll u, ll v) { e[++ cnt] = {head[u], v}; head[u] = cnt; } //链式前向星
void dfs(ll u) {
	for(ll i = head[u], v; i; i = e[i].nxt) {
		v = e[i].to;
		dfs(v);
		dp[u] = max(dp[u], dp[v]);
	}
	dp[u] += sz[u];
} //树形 DP
signed main() {
	cin >> n;
	for(ll i = 2; i <= n; ++ i) cin >> u, add(u, i), ++ sz[u];
	dfs(1);
	cout << dp[1];
	return 0;
}

在这里插入图片描述

后续

接下来我会不断用C++来实现信奥比赛中的算法题、GESP考级编程题实现、白名单赛事考题实现,记录日常的编程生活、比赛心得,感兴趣的请关注,我后续将继续分享相关内容

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值