机器学习算法:从异常检测到强化学习
在当今的科技领域,机器学习算法正发挥着越来越重要的作用。本文将深入探讨多种机器学习算法,包括异常检测、神经网络、Apriori算法、奇异值分解等,最后介绍强化学习的基本概念。
一、异常检测
1.1 异常检测的定义
在大多数数据集中,大部分数据点的值都在变量指定的范围内,但总会存在一些数据点的值超出了这个范围,这些数据点就被视为异常。异常检测就是一种区分那些值超出正常范围的数据点的方法,这些异常数据点也被称为离群值,它们可能预示着潜在的威胁,比如设备故障、安全漏洞、传感器故障或疾病症状等。在进行进一步分析和开发新模型时,通常需要去除这些异常数据点。
1.2 离群值的类型
离群值主要分为单变量离群值和多变量离群值:
- 单变量离群值 :指在单个变量中出现的极端值,偏离了该变量给定的值范围。
- 多变量离群值 :通常在多个变量的值同时组合时出现。
1.3 单变量异常检测方法
- 标准分数(Z - 分数) :计算数据点每个属性的标准差,然后测量该数据点的值与均值的偏离程度。如果一个数据点与均值的偏离值超过三个标准差,就被认为是离群值。
- 四分位距 :数据集的四分位距是第一四分位数(Q1,25%的数据点低于该四分位数)和第三四分位数(Q3,75%的数据点低于该四分位数)之间的范围,用IQR表示。如果一个数据点超出了[Q1 - 1.5 * IQR, Q3 + 1.5