redis7keeper
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
16、嵌入式系统中机器学习在恶意软件分析中的应用
本文探讨了在嵌入式系统中应用机器学习技术对安卓恶意软件进行动态分析和家族分类的方法。通过使用DFA指数评估指标稳定性,结合SVM分类器训练与测试,实验表明该方法在Drebin和AMD数据集上均具有良好的分类准确性。同时,文章比较了与DroidScribe的性能差异,并指出了未来改进方向,包括使用更先进的交互工具和集成在线学习技术等。原创 2025-08-03 10:59:31 · 18 阅读 · 0 评论 -
15、嵌入式系统中基于机器学习的安卓恶意软件家族分类方法
本文提出了一种基于机器学习的安卓恶意软件家族分类方法。通过在嵌入式系统中收集恶意软件运行时的资源消耗指标,提取其时间序列特征并生成指纹,利用支持向量机(SVM)进行训练和分类。方法采用了去趋势波动分析(DFA)和皮尔逊相关系数等特征提取技术,并通过特征选择优化特征集,提高了分类准确性。实验基于Drebin和AMD两个公开数据集验证了方法的有效性。文章还讨论了方法的优势、局限性以及未来的研究方向,如多源数据融合和深度学习的应用。整个流程通过自动化架构实现,适用于虚拟和物理设备环境,为嵌入式系统的恶意软件分析提原创 2025-08-02 14:30:12 · 11 阅读 · 0 评论 -
14、嵌入式系统中安卓恶意软件家族分类的机器学习方法
本文提出了一种基于动态分析的安卓恶意软件家族分类方法AndroDFA,通过自动执行安卓应用并模拟用户输入,收集资源消耗指标,结合去趋势波动分析(DFA)、皮尔逊相关系数、互信息、主成分分析(PCA)和支持向量机(SVM)等多种机器学习技术,实现对恶意软件的有效分类。与现有方法DroidScribe相比,AndroDFA具有更高的可复现性,并支持在物理设备上运行,从而提升对现代恶意软件的检测能力。实验结果显示,AndroDFA在AMD数据集上的平均准确率达到78%。原创 2025-08-01 15:20:08 · 10 阅读 · 0 评论 -
13、机器学习在网络物理电力系统安全与嵌入式系统恶意软件分析中的应用
本文探讨了机器学习在两个关键领域的应用:网络物理电力系统(CPPS)的安全分析和嵌入式系统的恶意软件分类。在网络物理电力系统中,PG-SeqGAN算法被用于恢复遭受虚假数据注入攻击的电力数据,实验表明该方法能高效恢复电压幅值和相角,误差分别低于0.03%和0.015%。此外,通过强化学习与马尔可夫决策过程(MDP)建模,可识别电力系统中的关键漏洞,以Q-学习算法模拟攻击者行为并制定防御策略。在嵌入式系统方面,AndroDFA方法通过动态分析资源消耗指标,结合去趋势波动分析和皮尔逊相关性提取特征,并使用支持向原创 2025-07-31 14:07:16 · 5 阅读 · 0 评论 -
12、机器学习助力网络物理电力系统安全
随着网络与物理层的深度融合,现代电力系统面临日益严峻的网络安全威胁。本文探讨了机器学习(ML)在维护网络物理电力系统(CPPS)安全方面的应用,系统分析了CPPS中的攻击类型(如窃听攻击、虚假数据注入攻击和DDoS攻击)及其防御框架。文章重点介绍了基于功率引导序列生成对抗网络(PG-SeqGAN)的测量数据恢复方法,以及利用马尔可夫决策过程(MDP)预测攻击者行为并识别关键脆弱节点的防御策略。此外,还总结了CPPS安全领域的研究挑战与未来方向,包括应对复杂攻击场景、多源数据融合、实时性提升以及与其他新兴技术原创 2025-07-30 09:26:01 · 7 阅读 · 0 评论 -
11、PUF现代架构与先进深度学习建模攻击的较量
本文探讨了物理不可克隆函数(PUF)在现代架构与深度学习建模攻击之间的竞争关系。重点分析了深度学习攻击对PUF安全性的威胁,以及新型混淆技术如N - to - 1混洗挑战分层PUF在提升抗攻击能力方面的表现。同时,文章总结了PUF的发展历程、应用领域、攻击与对抗措施的竞争关系,并展望了未来研究的方向和挑战。原创 2025-07-29 10:28:56 · 8 阅读 · 0 评论 -
10、PUF现代架构与先进深度学习建模攻击
本文探讨了现代物理不可克隆函数(PUF)架构的发展与挑战,重点分析了仲裁器PUF(APUF)、双稳态环PUF(BR-PUF)及其变种在面对先进深度学习建模攻击时的安全性。研究显示,尽管某些PUF架构设计旨在增强抗建模能力,但深度学习技术的进步使得攻击者能够以高准确率预测PUF响应。文章还讨论了混淆技术、噪声分叉、侧信道对策等防御手段,并分析了深度学习攻击成功的原因及其实用性。随着深度学习对PUF安全性的威胁日益增加,设计更具鲁棒性的PUF架构成为当务之急。原创 2025-07-28 15:10:57 · 13 阅读 · 0 评论 -
9、PUF架构的攻击与防御机制解析
本博客深入解析了物理不可克隆函数(PUF)的架构及其面临的多种攻击类型,包括基于机器学习的攻击、混合侧信道/机器学习攻击以及故障注入攻击,并结合数学模型和实验数据详细分析了不同PUF类型在这些攻击下的表现。同时,博客探讨了当前应对PUF攻击的主要防御机制,如增加数学关系的非线性和消除准确的数学模型,并对PUF在实际应用中的安全性、性能、成本及未来发展趋势进行了综合评述。通过全面的对比分析,为设计更安全可靠的PUF系统提供了理论支持和实践指导。原创 2025-07-27 13:13:21 · 8 阅读 · 0 评论 -
8、物理不可克隆函数(PUF):架构、特性与应用解析
本文深入解析了物理不可克隆函数(PUF)的架构、特性及其在安全领域的广泛应用。首先介绍了非电子PUF和电子固有PUF的主要类型及其工作原理,包括光学PUF、SRAM PUF、仲裁器PUF等。随后讨论了PUF的关键特性,如均匀性、可靠性、位间相关性和唯一性,并阐述了PUF在识别、认证和密钥生成中的具体应用场景和实现流程。最后总结了PUF技术的优势和未来潜力。原创 2025-07-26 16:46:24 · 8 阅读 · 0 评论 -
7、机器学习在安全硬件设计中的应用与物理不可克隆函数的攻防挑战
本文探讨了机器学习在硬件安全中的应用及其面临的挑战,重点分析了物理不可克隆函数(PUFs)的设计、攻击与防御机制。文章介绍了KU AES-PUF架构如何增强对深度学习攻击的抵抗力,并讨论了PUFs的分类、应用场景及面临的主要威胁。此外,还提出了针对PUFs的攻击对策以及未来研究方向,包括增强PUF抗攻击能力、提高机器学习算法鲁棒性,以及改进实时防御机制等。原创 2025-07-25 10:02:59 · 12 阅读 · 0 评论 -
6、用于安全PUF设计的机器学习:攻击与对策
本文探讨了物理不可克隆函数(PUF)在安全识别和认证领域的应用及其面临的威胁。从PUF的基本概念出发,分析了其在低成本设备中的注册和认证过程,以及遭受中间人攻击的风险。重点讨论了基于机器学习和深度学习的新型攻击技术,以及相应的防御策略。通过对比不同攻击和防御技术的特点,文章总结了PUF安全技术的发展趋势,包括攻击技术的智能化、防御技术的综合性与动态性,以及与其他安全技术的融合。最终强调了PUF安全性研究的重要性,并展望了其未来发展方向。原创 2025-07-24 16:25:39 · 13 阅读 · 0 评论 -
5、机器学习助力安全硬件设计
本文探讨了机器学习在安全硬件设计中的应用,重点分析了其在集成电路(IC)假冒检测、硬件特洛伊木马检测以及物理不可克隆函数(PUF)相关安全问题中的作用。文章概述了硬件安全的主要威胁,并详细介绍了监督学习和无监督学习方法在不同场景下的应用与挑战。同时,也讨论了未来在安全硬件设计领域中需要解决的问题及潜在的发展机遇,强调了技术创新和跨学科合作的重要性。原创 2025-07-23 14:57:25 · 6 阅读 · 0 评论 -
4、基于机器学习的嵌入式系统智能防篡改设计
本博客介绍了一种基于机器学习的嵌入式系统智能防篡改设计方案,通过多种算法在不同测试集和攻击类型下的性能评估,选择了最优的算法以实现高效篡改检测。文章详细描述了算法评估结果、原型测试流程、能量需求及安全验证,最终提出了未来改进方向,如对抗学习攻击和硅原型开发。原创 2025-07-22 16:17:54 · 6 阅读 · 0 评论 -
3、基于机器学习的嵌入式系统智能防篡改设计
本文探讨了基于机器学习的嵌入式系统智能防篡改设计方案,明确了系统的保密性、完整性与可用性安全目标,识别了信息泄露、篡改和破坏等主要威胁,并分析了如温度攻击、激光攻击等多种攻击机制。通过使用传感器阵列监测设备环境,结合异常值模型与多类分类模型,实现了对已知和未知攻击的检测与分类。实验基于Raspberry Pi和多种传感器收集数据,验证了方法的有效性,并通过比较机器学习算法得出一类支持向量机在多个场景下表现更优。文章最后展望了未来防篡改技术的智能化、多模态融合及与物联网的结合方向,并提出了优化建议和常见问题解原创 2025-07-21 16:26:52 · 6 阅读 · 0 评论 -
2、嵌入式系统智能防篡改设计:硬件安全全解析
本文全面解析了嵌入式系统的智能防篡改设计,涵盖硬件安全的核心内容,包括安全系统设计流程、硬件篡改攻击类型、现有防御机制、物理安全标准以及机器学习在安全中的应用。文章还结合关键基础设施物联网设备和军事系统等应用场景,分析了威胁建模和综合安全策略制定,并展望了硬件安全的未来发展趋势。原创 2025-07-20 12:30:01 · 10 阅读 · 0 评论 -
1、机器学习助力嵌入式系统安全防护
本文探讨了如何利用机器学习技术提升嵌入式系统的物理安全防护能力,特别是在面对日益复杂的攻击威胁时,传统的安全机制已无法满足需求。文章分析了当前的安全威胁现状,包括物联网设备激增、网络与物理层融合以及硬件供应链外包带来的挑战,并提出了基于机器学习的智能防篡改设计方案。该方案通过数据收集、特征提取、模型训练和实时监测等步骤,能够识别正常操作、分类已知攻击并检测新型攻击。通过原型系统验证和应用场景分析,证明该方法在关键基础设施和军事系统中具有良好的安全防护效果。原创 2025-07-19 09:36:40 · 4 阅读 · 0 评论