推荐系统指标——Hit Ratio(HR)

本文探讨了两种不同的推荐系统评价指标——基于《DeepCollaborativeFiltering》的hits计数方法和HR@test用户的定义。作者在工作中选择了前者,但详细解析了两种定义的差异,以帮助读者理解在实际应用中的选择和计算方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

我现在读过的文献里有两种定义。

第一种:《Deep Collaborative Filtering with Multi-Aspect Information in Heterogeneous Networks》中提到的:
在这里插入图片描述
原文中提到:where #hits is the number of users whose test item appears in the recommended list。分母#users是测试集中全体用户的个数。

第二种:
HR=∑ui∈Ωte∣Hitui∣∣Ωte∣ HR = \frac{\sum_{u_i \in \Omega_{te}}|Hit_{u_i}|}{|\Omega_{te}|} HR=ΩteuiΩteHitui
分子:uiu_iui为测试集中的某一个用户,∣Hitui∣|Hit_{u_i}|Hitui表示向uiu_iui推荐的物品中,属于测试集中的物品个数。
分母:∣Ωte∣|\Omega_{te}|Ωte表示测试集中所有物品的个数。

在我最近的工作中,我选择第一种作为我的指标计算。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值