动态规划
什么是动态规划? 动态规划(Dynamic Programming,简称 DP)是一种解决最优化问题的算法思想,特别适用于具有 重叠子问题 和 最优子结构 的问题。它的核心思想是将问题分解成子问题,通过保存子问题的结果(通常使用数组或表格)避免重复计算,从而提高效率。
1. 线性动态规划
线性动态规划是指问题的状态可以用一个线性结构(如数组的一维索引)来表示和转移的动态规划。
核心结构:
-
状态:通常是一个数组,例如 dp[i]dp[i]dp[i]
-
状态转移:从前一个状态推导出当前状态,例如 dp[i]=dp[i−1]+...dp[i] = dp[i-1] + ...dp[i]=dp[i−1]+...
-
初始化与边界处理是关键
1.1 线性动态规划的几种类型
类型 | 典型问题 | 状态示例 |
---|---|---|
基本递推型 | 斐波那契数列、爬楼梯问题 | dp[i]=dp[i−1]+dp[i−2]dp[i] = dp[i-1] + dp[i-2]dp[i]=dp[i−1]+dp[i−2] |
最大子序列型 | 最大连续子数组、打家劫舍 | dp[i]=max(dp[i−1],nums[i]+...)dp[i] = max(dp[i-1], nums[i] + ...)dp[i]=max(dp[i−1],nums[i]+...) |
背包型 | 01 背包、完全背包 | dp[i]=max(dp[i],dp[i−w]+v)dp[i] = max(dp[i], dp[i-w] + v)dp[i]=max(dp[i],dp[i−w]+v) |
最长序列型 | 最长递增子序列、LIS、LCS | dp[i]=max(dp[j]+1)dp[i] = max(dp[j] + 1)dp[i]=max(dp[j]+1) |
1.2 线性动态规划代码实现(爬楼梯问题)
import java.util.*;
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt(); // 总阶数
if (n <= 2) {
System.out.println(n);
return;
}
int[] dp = new int[n + 1];
dp[1] = 1;
dp[2] = 2;
for (int i = 3; i <= n; i++</