
AI人工智能
文章平均质量分 80
우리帅杰
点点点工程师
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
【Python-AI篇】K近邻算法(KNN)
计算已知类别数据集中的点与当前点之间的距离按距离递增次序排序选取与当前点距离最小的k个点统计前k个点所在的类别出现的频率返回前k个点出现频率最高的类别作为当前点的预测分类加载获取流行的数据集获取小规模数据集,数据包含在datasets里获取大规模数据集,需要从网络上下载,函数的第一个参数是data_home,表示数据下载的目录通过一些转换函数将特征数据转换成更加适合算法模型的特征数据过程通过对原始数据进行变化把数据映射到[0,1]之间。原创 2024-11-11 07:51:40 · 1027 阅读 · 0 评论 -
【Python-AI篇】seaborn
两个变量的二元分布可视化。使用joinplot函数,可以创建一个多面板图形,比如散点图、二维直方图、核密度估计等,以显示两个变量之间的双变量关系及每个变量在单坐标轴上的单变量分布# 语法格式表示绘制图形的类型用于计算有关关系的统计量并标注图表示绘图元素的颜色用于设置图的大小(正方形)表示中心图与侧边图的比例,该参数的值越大,则中心图占比越大用于设置中心图与侧边图的间隔大小# 创建DataFrame对象# 绘制散布图plt.show()# 创建DataFrame对象# 绘制二维直方图。原创 2024-11-01 22:11:53 · 1587 阅读 · 0 评论 -
【Python-AI篇】Pandas
自定义函数默认是列,axis=1为行进行运算连续属性离散化是为了简化数据结构,数据离散化技术可以用来减少给定连续属性的个数,离散方法经常用于数据挖掘工具连续属性离散化就是在连续属性的值域上,将值域划分为若干个区间,最后用不同的符号或者整数,值代表落在每个子区间中的属性值。原创 2024-11-01 16:00:13 · 857 阅读 · 0 评论 -
【Python-AI篇】numpy
数组在进行矢量化运算时,要求数组形状是相等的,当形状不相等的数组执行算术运算的时候,就会出现广播机制,会对数组进行扩展,使数组的shape一样,就可以进行矢量运算。array[:, :]先行后列。原创 2024-10-24 10:38:09 · 1051 阅读 · 0 评论 -
【Python-AI篇】matplotlib库
【代码】【Python-AI篇】matplotlib库。原创 2024-10-23 08:11:25 · 400 阅读 · 0 评论 -
【Python-AI篇】人工智能机器学习
从数据中自动分析获取模型,并使用模型对未知事务进行预测。原创 2024-10-22 20:27:54 · 668 阅读 · 0 评论 -
【Python-AI篇】数据库
select * from 表名 as 别名1 inner join 表名 as 别名2 on 别名1.字段1=别名2.字段2;特殊的文件(InnoDB数据表上的索引是表空间的一个组成部分),他们包含着对数据表里所有记录的位置信息。作为一个基本工作单元执行的一系列sql语句的操作,要么完全执行,要么完全不执行。将查询结构按照一个或多个字段进行分组,字段值相同的为一组。越高的范式数据库冗余越少。可以大大加快查询速度。原创 2024-10-22 15:53:10 · 1119 阅读 · 0 评论 -
【Python-AI篇】数据结构和算法
实现业务目的的各种方法和思路算法是独立的存在,只是思想,不依附于代码和程序,可以使用不同语言实现(java,python,c)原创 2024-10-21 22:59:47 · 1977 阅读 · 0 评论 -
【Python-AI篇】人工智能python基础-计算机组成原理
用于过滤序列,过滤掉不符合的元素,返回一个filter对象,如果要转换为列表,可以使用list()来转换。其中func必须有两个参数,每次func计算结果继续和序列的下一个元素做累计运算。将传入的函数变量func作用到lst变量的每个元素中,并将结果生成新的迭代器。一个函数只有一个返回值,并且只有一句代码,可用lambda简化。lambda 参数 : 表达式。### 3.2.13 远程命令。原创 2024-10-20 11:02:43 · 875 阅读 · 0 评论 -
【测试能力提升-AI】AI介绍
注释:搞python的最终梦想,搞机器,玩深度,通网络,知模型,拿下AI技术,尽管只是测试,但是也是有梦想的。原创 2024-07-23 20:50:27 · 238 阅读 · 0 评论 -
【python-AI篇】人工智能技能树思维导图
大致总结一下得出如下思维导图,如不完善日后迭代更新。原创 2024-06-15 11:09:19 · 866 阅读 · 0 评论