分布式全局输电应急分析方法及其加速策略
1. 应急后全局潮流模型
考虑输电系统(TPS)和配电系统(DPS)潮流的全局潮流(GPF)模型可从相关理论推导得出。当满足特定条件时,可得到如下 GPF 模型:
[
\begin{cases}
f_M (x_M, x_B) = 0 \
f_B (x_M, x_B, x_S) = 0 \
f_S (x_B, x_S) = 0
\end{cases}
]
基于此,建立应急后 GPF 模型:
[
\begin{cases}
\dot{F} M (\dot{V} {M,c}) - \dot{F} {MM} (\dot{V} {M,c}) - \dot{F} {MB} (\dot{V} {M,c}, \dot{V} {B,c}) = 0 \
\dot{F}_B (\dot{V} {B,c}) - \dot{F} {BM} (\dot{V} {M,c}, \dot{V} {B,c}) - \dot{F} {BB} (\dot{V} {B,c}) = \dot{F} {BS} (\dot{V} {B,c}, \dot{V} {S,c}) \
\dot{F} S (\dot{V} {S,c}) - \dot{F} {SB} (\dot{V} {B,c}, \dot{V} {S,c}) - \dot{F} {SS} (\dot{V